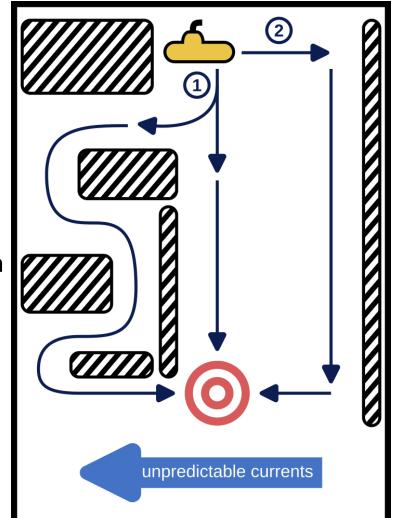
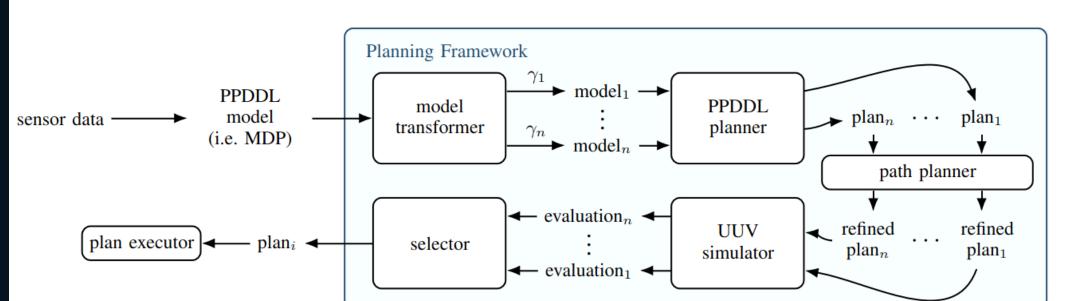
Risk-averse Planning and Plan Assessment for Marine Robots

Presenter: **Mahya M. Kashani** IT-University of Copenhagen

REMARO workshop, **ETAPS**


This work is part of the project REMARO that has received funding from the European Union's Horizon 2020 research and innovation programme under the Martes Martes Martes Martes Revenue and agreement No 956200

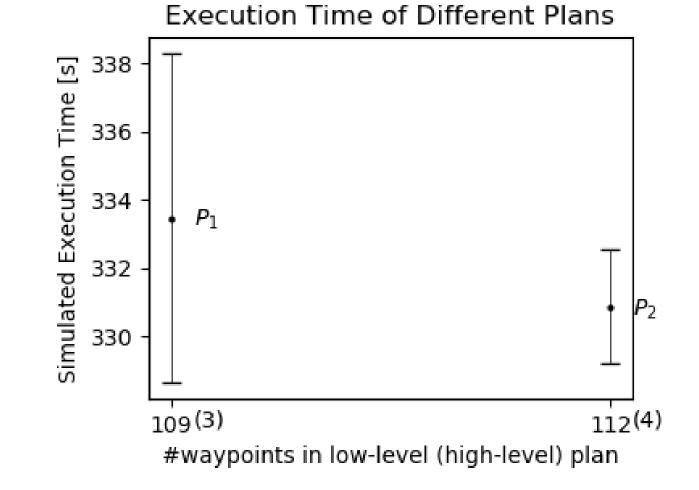
Risk-sensitive Planning


- Scenario: subsea infrastructure inspection
- Problem: we need multiple plans and select safest one among them
- **Solution**: Risk-sensitive planning (high-level), sonar probabilistic mapping (low-level)

.

- Plan Generation
- Plan Evaluation

Proposed Framework

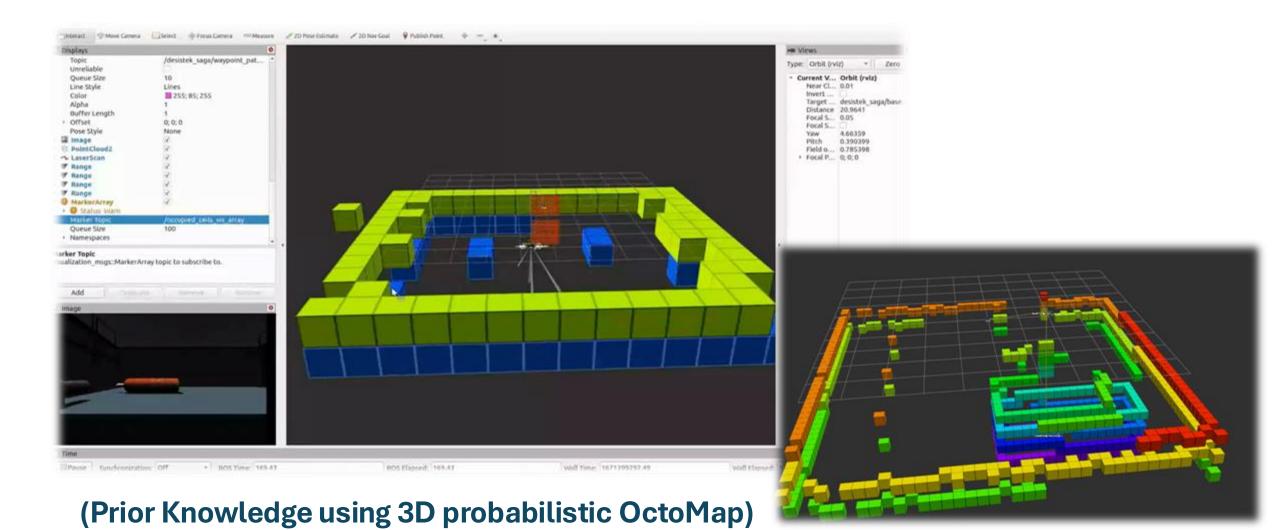

.....

• Plan Execution (Simulation)

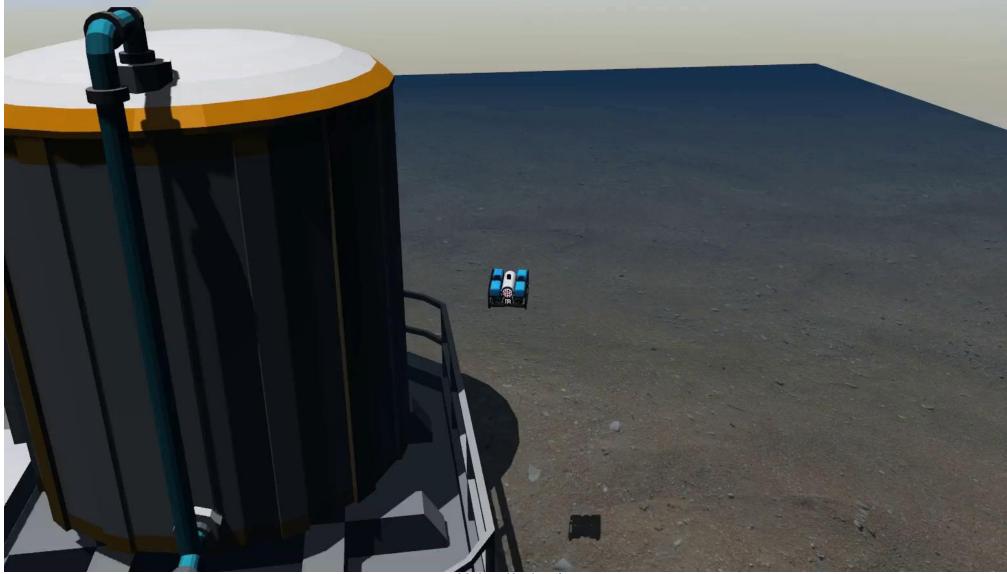
Risk-sensitive vs Risk-neutral Planner

P1: shortest but dangerous

P2: longer but safest


Generated plans using risk-averse planning

ID	Plan schema	planning time[s]	high-level	low-level	assessment (exec. time) mean [s] variance entropy		
ID	Fian schema	time[s]	length	length	mean [8]	variance e	пітору
P_1	lg tank \rightarrow quad tank \rightarrow sm tank	0.09	3	109	332	13.8	2.3
P_2	lg tank \rightarrow tank pairs \rightarrow platform \rightarrow quad tank \rightarrow sm tank	0.11	5	114	297	1.6	2.3
P_3	lg tank \rightarrow tank pairs \rightarrow lg tank \rightarrow platform \rightarrow quad tank \rightarrow sm tank	0.15	6	115	351	0.3	2.3
P_4	lg tank \rightarrow quad tank \rightarrow lg tank clone \rightarrow sm tank	0.07	4	112	294	0.2	2.3
P_5	lg tank \rightarrow tank pairs \rightarrow lg tank \rightarrow quad tank \rightarrow sm tank	0.11	5	114	305	0.2	2.3


Different scenarios for risk-averse planning

	Problem properties		Properties of the safest plan			
ID	depth [state]	#crit. states	length	risk (γ)	planning time [s]	
1	3	3	5	0.95	0.05	
2	4	4	5	0.74	0.06	
3	5	5	6	0.40	0.11	
4	6	6	17	0.57	0.10	
5	10	5	13	0.67	0.11	
6	15	5	13	0.49	0.14	
7	20	6	17	0.84	0.08	
8	30	10	52	0.58	0.13	
9	40	15	66	0.84	0.16	
10	50	15	86	0.96	0.21	
11	60	15	106	0.97	0.29	
12	70	15	126	0.95	0.40	
13	80	15	146	0.59	0.54	
14	90	15	166	0.57	0.93	
15	90	25	166	0.42	0.98	
16	90	35	166	0.75	1.04	

Sonar Mapping

Simulation (4x times)

Conclusion

- Common risk-neutral planners' issue is those optimize planning problem w.r.t. time step
- Modeling transformed MDP with risk-sensitive utility
- Utilizing new model in PPDDL programming language format
- Developing and leveraging an integrated risk-sensitive plan selection in risk-neutral probabilistic planner
- Evaluating generated plans using introduced metrics

Publications

- John, T., Kashani, M.M., Coffelt, J.P., Johnsen, E.B. and Wasowski, A., 2023. Reliable Plan Selection with Quantified Risk-Sensitivity. In NWPT 2023-34th Nordic Workshop on Programming Theory.
- Kashani, M.M., John, T., Coffelt, J.P., Johnsen, E.B. and Wasowski, A., 2024. Risk-averse Planning and Plan Assessment for Marine Robots. Submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems.

Https://github.com/remaro-network/risk-averse_planning Https://github.com/remaro-network/remaro_scenarios