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Figure 1: Reward comparison between two
plans using risk metric, e.g. variance

Robots in many domains need to plan and make
decisions under uncertainty [1, 4]; for example, au-
tonomous underwater vehicles (AUVs) gathering
data in environments inaccessible to humans, need
to perform automated task planning [3]. Planning
problems are typically solved by risk-neutral op-
timization maximizing a single objective, such as
limited time or energy consumption [2].

A typical probabilistic planner synthesizes a
plan to reach the desired goals with a maximum
expected reward, given the possible initial states
and actions of the world. In this work, we ad-
ditionally consider risk metrics for selecting solu-
tions to such planning problems. Consider a ma-
rine robotics mission scenario where the task is to
survey pipeline segments safely based on various risk measurements. During the mission, the
AUV needs to choose between two paths P1 and P2. A typical probabilistic planner here finds
the expected accumulated reward R2 for P2 to be greater than the accumulated reward R1 of P1,
and selects P2 (see Fig. 1). However, P1 has a higher variance, which means that it is in fact less
likely to achieve the expected reward than P2. The red dashed line depicts a minimum success
reward value where the AUV’s mission will not fail. Note that the probability of failing (the
shaded area) is much higher for P1 than for P2, even though P2 exhibits higher expected reward.

We consider planning problems that additionally capture the certainty (or, alternatively,
the risk) associated with the candidate solutions and rewards in a semantic form. We use
Probabilistic Programming Domain Definition Language (PPDDL), and translate its models
into Markov decision processes (MDPs) [7]. In other words, we translate a planning problem to
a new risk-sensitive planning problem, which enables the selection of a plan switch with different
risk levels. For example, to produce a risk-sensitive plan for the scenario above, we transform
the PPDDL planning problem with a waypoint-following action in which there is a 90% chance
that an AUV can move from point A to point B and obtain two reward points, as shown in Fig. 2.

Constructing Risk-Sensitive Plans We model probabilistic systems as MDPs with re-
wards, i.e., 5-tuples M = (S,A,P, s0,R) where S is a finite set of states, A a finite set of
actions, P : S×A×S → [0, 1] the transition function, s0 ∈ S the initial state and R : S 7→ R≥0

the reward.
Given a plan π : S 7→ A, nondeterminism in the MDP can be resolved to obtain the induced

Markov chain (MC) Mπ = (S,Pπ, s0,R) where for each pair of states s, s′ the transition
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(:action waypoint-following
:parameters (?from ?to)
:precondition (position ?from)
:effect (probabilistic 0.9 (and

(position ?to)
(not (position ?from))
(increase (reward) 2)

))
)

(a) before transformation

(:action waypoint-following
:parameters (?from ?to)
:precondition (position ?from)
:effect (probabilistic -0.225 (and

(position ?to)
(not (position ?from))

))
)

(b) after transformation

Figure 2: Transformation at the level of a PPDDL action where γ = 0.5. Probability of effect
of taking action from (a) transformed to pseudo-probability in (b).

probability is defined by Pπ(s, s
′) = P(s, π(s), s′). A history h is a finite sequence of states

h = (s0, s1, . . . , sn). Define a history’s probability by P(h) =
∏n−1

i=0 Pπ(si, si+1) and its reward
by R(h) =

∑n−1
i=0 R(si). For goal states G ⊆ S, the corresponding reward of the Markov Chain,

RM(G), is a discrete random variable with:

Pr
(
RM(G) = x

)
=

∑
h=(s0,...,sn)

sn∈G;s0,...,sn−1 ̸∈G
R(h)=x

P(h)

To find a plan π that best balances expected reward and associated risk for a given MDP M
with goal states G, we first generate a set of different candidate plans. These candidates trade
some of the expected reward for a lower risk. Our framework is agnostic to the algorithm to
compute the different candidates.

In this paper, we generate candidate plans using Koenig and Simmons’ approach [5] to gen-
erate risk-averse plans with a non-linear utility function for cumulative rewards. This function
values a difference between high rewards less than the same difference between smaller rewards;
i.e., the cumulative reward of a few “best-case” paths has smaller impact on plan selection than
many paths with a decent cumulative reward. The utility function depends on a parameter γ,
which balances expected reward and involved risk. The main advantage of this construction is
that we obtain a utility function for the cumulative reward for risk-sensitive planning by only
making local changes; i.e., the probabilities of the MDP’s transitions are replaced by values
that take the probability, immediate reward and the risk sensitivity into account.

Definition 1 (Transformed Transition System). Given an MDP M = (S,A,P, s0, R) and a
parameter γ with 0 < γ < 1, we define the transformed transition system Mγ = (S,A,Pγ , s0)
where Pγ : S ×A× S → [−1, 0] with

Pγ(s, a, s′) = P(s, a, s′) ·
(
−γR(s)

)
Although this transition system is not an MDP, standard algorithms can be used to find the
plan that maximizes the “pseudo-probability” to reach a goal state [5]. This construction is
well-suited for our setting, as we consider PPDDL domains to describe the MDP and the
transformation described in Def. 1 can be done at the level of the actions in these domains.

We can now iterate over different values of γ and call a generic PPDDL planner to generate
the optimal plan for each value. This “optimal plan” is simply the plan that maximizes the
probability of reaching one of the goal states. For different values of γ, we get different plans,
which form our set of candidates.
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A crucial point of our approach is that plans are always generated w.r.t. a limited number
of risk metrics, as planners can only handle a limited number of objectives at a time. In our
specific case, only the parameter γ is considered. This risk measurement might—but need not—
correlate to other risk metrics, e.g., variance or entropy of the cumulative reward. Therefore,
we propose different methods to asses candidate plans across all risk measurements of interest.

Plan Selection To select the best plan, we use metrics based on the probability distribution
of the reward RMπ

(G) to evaluate each of the candidate plans. One approach for this is to
utilize Monte Carlo simulation in the MDP M. However, this is insufficient for autonomous
underwater robots since formalizing an MDP model M for robotic behaviour always involves
simplifying assumptions of their physical environment. For AUVs, this would require neglecting
critical considerations such as unpredictable water currents, GPS-denied vehicle localization or
noisy acoustic sensors. In order to overcome such limitations, we use an underwater physics
simulator that also provides increased realism. The following are metrics we consider:

• The expected reward E[D′] is typically a primary concern when selecting a plan. Even in
risk-averse settings, a decent expected reward is required.

• The variance of the reward E[D′ −E[D′]2] is an often used measurement for risk [6]. The
higher the variance, the more risk is involved.

• The entropy of the reward −
∑

x∈R Pr(D′ = x) log2(Pr(D
′ = x)) is another common met-

ric used to measure the uncertainty or "surprise" or a reward. In general, a generalization
of entropy to continues variables might be needed.

• The reward-bounded probability Pr(D′ ≤ b) is the probability that the reward falls below
a given bound b. This metric allows us to estimate how often bad runs occur.

Depending on the specific application, these metrics might differ on importance. By considering
a variety of risk metrics, practitioners can obtain a more balanced and informed assessment of
the risk involved in the selected plan.
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