







## Introduction to Deep Learning (CNNs)

Mahya Mohammadi Kashani CSNN, April 2018 Shahid Rajaee Teacher Training University



## Out Line

- Review of Machine Learning (Classification)
- Why is Deep Learning?
- Applications
- Challenges
- Structures of CNNs
- Learning tricks
- CNN Architectures
- relation between DL and Brain!
- Implementations (TensorFlow, Keras)
- Deep models in AIA Task
- Conclusion
- References



# What is Deep Learning? Deep Learning is a subfield of mechine learning. $y = F(x, \theta)$ Target

#### Introduction











credit : UTDLSS2017



## What is Deep Learning?

Deep Learning is a subfield of machine learning.





## Introduction

## What is Deep Learning?

Deep Learning is a subfield of machine learning.





# 

**Small Size Dataset** 

**Limited Computing Resources** 



High Dimensional Large Data Sample

#### Machine Learning before being Deep... **Feature Extractor** Dataset **Features** Machine Learning Train = **Algorithms** (model Parameters) (Classifier) Target Machine Learning Feature Extractor Test **Features** Algorithms (Classifier)













Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

credit : Nvidia







## Autonomous navigation of cars and drones





## Autonomous navigation of cars and drones





## Robots use deep learning



credit : Nvidia



## Health Care

Al In Healthcare: Machine Learning and





**CB**INSIGHTS

Created By













## Deep Learning in Conversational Interface



a alamy stock photo

JKF3XJ www.alamy.com



## Deep Learning in Speech Separation and Recognition



https://research.googleblog.com/2018/04/looking-to-listen-audio-visual-speech.html



## Deep Learning in Speech Separation and Recognition



https://research.googleblog.com/2018/04/looking-to-listen-audio-visual-speech.html



## Alpha Zero: Genius of Chess









## Deep Learning in Genomic



'Deep learning' reveals unexpected genetic roots of cancers, autism and other disorders



## Image Classification



Assume: you have given a set dicrete labels: {Cat, Dog, Bus, Tree, ... }

Cat





## Classification























Weight Regularization











Optimization











Credit: CS231,N Stanford



## **Machine Learning Problem**



- f() is pre-determined.
- w is the model parameters which need to be learned from data.

## What is Classification:





### Linear Classifiers:

Two class Classification



Multiclass Classification: More than 2 outputs





## Linear Classifiers:



Input





Weight



# Loss function



### Example: Suppose 3 images, 3 classes

$$f(x; W) = Wx$$



Dog

3.2

Cat

5.1

Cow

-1.7

#### Multiclass SVM Loss:

Given an example  $(x_i, y_i)$  where  $x_i$  is the input sample and  $y_i$  is the (integer) label. Also We define  $s = f(x_i; W)$ The SVM formula is:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$L_i = \max(0, 5.1 - 3.2 + 1) + \max(0, -1.7 - 3.2 + 1)$$

$$L_i = 2.9 + 0 = 2.9$$

### **Example:** Suppose 3 images, 3 classes

$$f(x; W) = Wx$$



#### Multiclass SVM Loss:

Given an example  $(x_i, y_i)$  where  $x_i$  is the input sample and  $y_i$  is the (integer) label. Also We define  $s = f(x_i; W)$ 

The SVM formula is:

 $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$ 

 $L_i = \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1)$ 

 $L_i = 0 + 0 = 0$ 

Dog

Cat

Cow

2.0

4.9

1.3





Dog

1.3

Cat

4.9

Cow

2.0

#### Multiclass SVM Loss:

Given an example  $(x_i, y_i)$  where  $x_i$  is the input sample and  $y_i$  is the (integer) label. Also We define  $s = f(x_i; W)$  The SVM formula is:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Credit: CS231N Stanford

Interpretation: when loss is zero



### **Example:** Suppose 3 images, 3 classes

$$f(x; W) = Wx$$



#### Multiclass SVM Loss:

Given an example  $(x_i, y_i)$  where  $x_i$  is the input sample and  $y_i$  is the (integer) label. Also We define  $s = f(x_i; W)$ The SVM formula is:

Dog 2.2
Cat 2.5
Cow -3.1

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$L_i = \max(0, 2.2 + 3.1 + 1) + \max(0, 2.5 + 3.1 + 1)$$

$$L_i = 6.3 + 6.6 = 12.9$$

Credit: CS231N Stanford

## Loss Formula for all samples:

$$f(x; W) = Wx$$

$$L = \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

There is a bug here

Suppose that we found a W such that L=0, is this W unique?

# Weight Regularization



### f(x;W) = Wx

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$



#### Before:

 $L_i = \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1)$ 

$$L_i = 0 + 0 = 0$$

Dog

36

Cat

Cow

1.3

4.9

2.0

With W twice as large:

$$L_i = \max(0, 2.6 - 9.8 + 1) + \max(0, 4.0 - 9.8 + 1)$$

$$L_i = 0 + 0 = 0$$

### Weight Regularization:

$$f(x; W) = Wx$$

$$L = \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1) + \lambda R(W)$$

- L2 norm:  $R(W) = \sum_{i} \sum_{j} W_{i,j}^2$
- L1 norm:  $R(W) = \sum_{i} \sum_{j} |W_{i,j}|$

### Weight Regularization Example:

$$x = [1,1,1,1]$$

$$W_1 = [1,0,0,0]$$

$$W_2 = [0.25, 0.25, 0.25, 0.25]$$

$$W_1^T.x = W_2^T.x = 1$$



#### Softmax Classifier:

$$f(x;W)=Wx$$

scores: un-normalized log probabilities of classes



$$P(Y = k | X = x_i) = \frac{e^{s_i}}{\sum_j e^{s_j}} \quad \text{where} \quad s = f(x_i; W)$$

Want to maximize the log likelihood or (for loss function) minimize the negative log-likelihood of the correct class:

$$L_i = -logP(Y = k|X = x_i)$$

Dog

3.2

Cat

5.1

Cow

-1.7

$$L_i = -\log(\frac{e^{sy_i}}{\sum_j e^{s_j}})$$

Credit: CS231N Stanford















# Optimization







## The loss is just a function of W

So just calculate  $\frac{\partial L}{\partial w}$  using calculus!  $\odot$ 













### Why Deep Learning?







Why Deep learning, Slide by Andrew NG





Why Deep learning, Slide by Andrew NG



## Why deep learning







Deep Learning = Learning Hierarchical Representations Slide by Yann LeCun



#### Important Property of Neural Networks

Results get better with

more data + bigger models + more computation

(Better algorithms, new insights and improved techniques always help, too!)

Result Get Better With More Data, Larger Model, More Computation, Slide by Jeff Dean



## challenges





## Semantic Gap





What the computer sees

Cs231n-Lecture2-Stanford University



### **Viewpoints**





Thoma, Martin (2016).



## *Illumination*





# Deformation







## Background Clutter





Thoma, Martin. "A survey of semantic segmentation." arXiv preprint arXiv:1602.06541 (2016).

### Intra-Class Variation





### **Convolutional Neural Network:**



LeNet5-LeCun 1998



### CNN vs MLP:





### **CNN Structure**













# Cor

#### **CNN Layers:**

- Convolution Layer
- · Sub sampling Layer (Max Pooling Layers, Average Pooling Layers,...)
- · Non-linear layer (Sigmoid, Tanh, ReLU,...)

**Example of convolution:** 













# Covolutional Layer:





Credit: UTDLSS2017

## **Covolutional Layer:**



Credit: UTDLSS2017



## **Example of convolution:**



| -1                | -2 | -1 | -1                  | 0 | 1 |
|-------------------|----|----|---------------------|---|---|
| 0                 | 0  | 0  | -2                  | 0 | 2 |
| 1                 | 2  | 1  | -1                  | 0 | 1 |
| Finds horizontals |    |    | <br>Finds verticals |   |   |



https://mlnotebook.github.io/post/CNN1/



## **Covolutional Layer:**







https://mlnotebook.github.io/post/CNN1



# Govonulonal Layer













# more than one Kernel:





# **ConvNet:**









## Closer Look at Convolution:



Practical Note: In practice, It is common to zero pad.

Output Size formula: (N - F)/stride + 1

N = 9, S=1, F=3

Output Size: (9-3)/1+1=7

# **Convolution** Example:

Input size: 3\*32\*32

Filter size: 20 3\*5\*5, Padding=2 and Stride 1

Output size: (32+4-5)/1+1=32 -> 20\*32\*32

Number of Learnable Parameters: 20\*3\*5\*5=1500





# **Convolution** Summary:

Summary. To summarize, the Conv Layer:

- Accepts a volume of size  $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
  - Number of filters K,
  - their spatial extent F,
  - · the stride S.
  - the amount of zero padding P.
- Produces a volume of size  $W_2 imes H_2 imes D_2$  where:
  - $W_2 = (W_1 F + 2P)/S + 1$
  - $\circ \; H_2 = (H_1 F + 2P)/S + 1$  (i.e. width and height are computed equally by symmetry)
  - $D_2 = K$
- With parameter sharing, it introduces  $F \cdot F \cdot D_1$  weights per filter, for a total of  $(F \cdot F \cdot D_1) \cdot K$  weights and K biases.
- In the output volume, the d-th depth slice (of size  $W_2 \times H_2$ ) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

# **Convolution** Example:





#### TensorFlow:

tf.layers.conv2d(I, O, F, S, P, use\_bias=True)

I: Tensor Input (inputs)

O: Output cube depth (filters)

F: Filter spatial size (Kernel\_size)

S: Stride (strides)

P: Padding (padding)

Use\_bias: If is true, then you define a bias

term for each filter

...



# **Pooling Layer**

Common Setting:

F = 2, S = 2

F = 3, S = 2



| 1 | 2 | 6  | 5 |
|---|---|----|---|
| 0 | 3 | 1  | 5 |
| 7 | 2 | 9  | 1 |
| 4 | 8 | 10 | 0 |

- Accepts a volume of size  $W_1 imes H_1 imes D_1$
- · Requires three hyperparameters:
  - $\circ$  their spatial extent F,
  - $\circ$  the stride S,
- ullet Produces a volume of size  $W_2 imes H_2 imes D_2$  where:
  - $W_2 = (W_1 F)/S + 1$
  - $H_2 = (H_1 F)/S + 1$
  - $\circ D_2 = D_1$
- · Introduces zero parameters since it computes a fixed function of the input
- . Note that it is not common to use zero-padding for Pooling layers

TensorFlow:

tf.layers.max\_pooling2d(I,F,S,P)

I: Tensor Input (inputs)

F: Filter spatial size (pool\_size)

S: Stride (strides)

P: Padding (padding)

Cs231n-Lecture7 Stanford



# **Activation function Layer**

- Sigmoid
- Tanh
- ReLU
- Leaky ReLU



- Sigmoid
- Squashes numbers to range [0, 1]
- · Historically popular in literature.

#### 3 problems:

- 1. Saturated neurons "kill" the grad
- Sigmoid are not zero centered.
- 3. exp() is a bit compute expensive.







#### ReLU Layers:

- Relt
- · Does not saturate (in +region)
- · Very computationally efficient
- Converges much faster that sigmoid/tanh in practice (e.g. 6x)
- · Not zero centered output
- An annoyance



TensorFlow: tf.nn.sigmoid() tf.nn.tanh() tf.nn.ReLU()

Cs231n-Lecture5,7 Stanford



- Sigmoid
- Tanh
- ReLU
- Leaky ReLU



# moid Layers:

#### Sigmoid

- Squashes numbers to range [0, 1]
- Historically popular in literature.

#### roblems:

Saturated neurons "kill" the gradient. Sigmoid are not zero centered.

exp() is a bit compute expensive.





# Domy Roll

# Tanh Layers:

- Tanh
  - Squashes numbers to range [-1, 1]
  - Zeros centered (nice)
  - Still kill gradient when saturated 🕾



# **ReLU** Layers:

- ReLU
  - Does not saturate (in +region)
  - Very computationally efficient
  - Converges much faster that sigmoid/tanh in practice (e.g. 6x)
  - Not zero centered output
  - An annoyance









# **Leaky ReLU Layers:**

- ReLU
  - Does not saturate (in +region)
  - Very computationally efficient
  - Converges much faster that sigmoid/tanh in practice (e.g. 6x)
  - Will not die



# TensorFlow: tf.nn.sigmoid() tf.nn.tanh() tf.nn.ReLU()



#### **CNN** on MNIST in TF:



```
input layer = tf.reshape(x, [-1, 28, 28, 1])
# Define Convolution(& Pooling) Layer1
conv1 = tf.layers.conv2d(inputs=input_layer,
                         filters = 16,
                         kernel_size=[5, 5],
                         strides=[1,1],
                         activation=tf.nn.relu)
pool1 = tf.layers.max pooling2d(inputs=conv1,
                                 pool_size=[2,2],
                                 strides=2)
# Define Convolution(& Pooling) Layer2
conv2 = tf.layers.conv2d(inputs=pool1,
                         filters = 64,
                         kernel_size=[5, 5],
                         strides=[1, 1],
                         activation=tf.nn.relu)
pool2 = tf.layers.max_pooling2d(inputs=conv2,
                            pool_size=[2, 2],
                            strides=2)
# Multiply The Shape of Previous Layer
dim = np.prod(pool2.get_shape().as_list()[1:])
# Define Fully Connected Layers
relu2_flat = tf.reshape(pool2, [-1, dim])
fc1 = tf.layers.dense(inputs=relu2_flat,
                      units=256,
                      activation=tf.nn.relu)
fc2 = tf.layers.dense(inputs=fc1,
                      units=n_classes)
```



## deep visualization ToolBox

# Deep Visualization Toolbox

yosinski.com/deepvis

#deepvis



Jason Yosinski



Jeff Clune



Anh Nguyen



Thomas Fuchs



Hod Lipson









# **Advance info about Learning**

- Learning Tricks
- Dropout
- Weight Initialization
- · Batch Normalization











#### Regularization Technique:

- L2 norm
- Lı norm
- · Dropout!











# Advance info about Lea



#### Underfitting:

- occurs when a statistical model or machine learning algorithm cannot capture the underlying trend of the data.
- · fitting a linear model to non-linear data



# Regularization Technique:

- L2 norm
- L1 norm
- Dropout!



# Learning Tricks:

#### Working as a detective:











#### Learning Tricks:

#### Some Rules for train a classifier

Split your data into 3 parts:

- 1. Training data: for learning the weight of the network
- 2. Validation data: For detecting overfitting
- 3. Test data: For measuring the accuracy of your model

Validation data is not only used for checking overfitting, but it is usable for defining hyper-parameters (structural parameters):

- 1. # epochs to train for
- 2. Best network architecture
- 3. Learning Rate
- 4. ...



Covariate shift:

Example: 10-layer net with 500 neurons on each layer, using tanh nonlinearities, and initializing as described in last slide

# Regularization Technique:

- L2 norm
- Li norm
- Dropout!







a simple way to prevent neural networks from over fitting (nitish sirivasta, 2014)



## Covariate shift:

Example: 10-layer net with 500 neurons on each layer, using tanh nonlinearities, and initializing as described in last slide



- All activations become -1 and 1 saturation area
- Gradient vanishing occurs (think W\*X in backward path)
- Low convergence speeds constant loss

Cs231n-Lecture5-Stanford University



#### Covariate shift:

Example: 10-layer net with 500 neurons on each layer, using ReLU nonlinearities, and initializing as described in last slide



Cs231n-Lecture5-Stanford University



# Batch Normalization:

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Sergey Ioffe, Christian Szegedy - 2015



# Architecture of CNN Szepichy, 2012 Szepichy, 2012 Szepichy, 2012 Szepichy, 2014 Szepichy, 2015 Szepichy, 2014 Szepichy, 2015 Szepichy, 2014 Szepichy, 2015 Szepichy,



# AlexNet - 2012

# Deep Learning Architecture:

#### AlexNet:

Input: [3\*227\*227]

Conv1: 96 F=3\*11\*11, stride=4, padding =0

MaxPool1: F=3\*3, Stride=2 Norm1 = Normalization Layer

Conv2: 256 F=96\*5\*5, stride=1, padding =2

MaxPool2: F=3\*3, Stride=2 Norm2 = Normalization Layer

Conv3: 384 F=256\*3\*3, stride=1, padding = 1 Conv4: 384 F=384\*3\*3, stride=1, padding = 1 Conv5: 256 F=384\*3\*3, stride=1, padding = 1

MaxPool3: F=3\*3, Stride=2

FC6: 4096 Neurons FC7: 4096 Neurons

FC8: 1000 Neurons (Class Scores)



Input: 256\*13\*13

Formula:  $\frac{(N-F)}{S} + 1$ 

Output (MaxPool3): 256\*6\*6

- Using ReLU
- Using Norm Layer
- · Heavy data augmentation
- Dropout = 0.5
- Batch size 128
- SGD momentum 0.9
- Lr=0.01, with decay 0.1
- L2 weight decay 0.0005
- Top 5 error: 18.2% -> ensemble 7 CNN (15.04%)



# ZF.Net-2013

## Deep Learning Architecture:

#### ZFNet:

It is like AlexNet but:

- Conv1 changes from (11\*11 stride 4) to (7\*7 stride 2)
- Conv3,4,5: depths change from 384, 384, 256 filters to 512, 1024, 512
- Top 5 error: 14.8





# VGGNet-2014

# Deep Learning Architecture: VGGNet

- Only Conv with F=3\*3 and stride=1, padding=1
- Maxpooling with F=2\*2 and Stride 2
- Top 5 Error is: 7.3%

...

|                        |                                        | ConvNet C              | onfiguration                        |                                     | •                                                |
|------------------------|----------------------------------------|------------------------|-------------------------------------|-------------------------------------|--------------------------------------------------|
| A                      | A-LRN                                  | В                      | C                                   | D                                   | Е                                                |
| 11 weight<br>layers    | 11 weight<br>layers                    | 13 weight<br>layers    | 16 weight<br>layers                 | 16 weight<br>layers                 | 19 weight<br>layers                              |
| 9 SESTENCE N           | l-salesessa                            |                        |                                     |                                     |                                                  |
| conv3-64               | conv3-64<br>LRN                        | conv3-64<br>conv3-64   | conv3-64<br>conv3-64                | conv3-64<br>conv3-64                | conv3-64<br>conv3-64                             |
| li ili                 |                                        |                        |                                     |                                     |                                                  |
| conv3-128              | conv3-128                              | conv3-128<br>conv3-128 | conv3-128<br>conv3-128              | conv3-128<br>conv3-128              | conv3-128<br>conv3-128                           |
|                        | (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                        |                                     |                                     |                                                  |
| conv3-256<br>conv3-256 | conv3-256<br>conv3-256                 | conv3-256<br>conv3-256 | conv3-256<br>conv3-256<br>conv1-256 | conv3-256<br>conv3-256<br>conv3-256 | conv3-256<br>conv3-256<br>conv3-256              |
|                        |                                        |                        |                                     |                                     |                                                  |
| conv3-512<br>conv3-512 | conv3-512<br>conv3-512                 | conv3-512<br>conv3-512 | conv3-512<br>conv3-512<br>conv1-512 | conv3-512<br>conv3-512<br>conv3-512 | conv3-512<br>conv3-512<br>conv3-512<br>conv3-512 |
|                        |                                        |                        |                                     |                                     |                                                  |
| conv3-512<br>conv3-512 | conv3-512<br>conv3-512                 | conv3-512<br>conv3-512 | conv3-512<br>conv3-512<br>conv1-512 | conv3-512<br>conv3-512<br>conv3-512 | conv3-512<br>conv3-512<br>conv3-512<br>conv3-512 |
|                        |                                        | max                    | pool                                |                                     | 1                                                |
|                        |                                        | FC-                    | 4096                                |                                     |                                                  |
|                        |                                        |                        | 4096                                |                                     |                                                  |
|                        |                                        |                        | 1000                                |                                     |                                                  |
|                        |                                        | soft                   | -max                                |                                     |                                                  |



# GoogleNet-2014

# Deep Learning Architecture: GoogleNet INCEPTION MODULES AVERNGE POOLING INCEPTION MODULES



# *ResNet-2015*





# *ResNet-2015*

## Deep Learning Architecture:

#### ResNet:

ResNets @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
  - ImageNet Classification: "Ultra-deep" 152-layer nets
  - ImageNet Detection: 16% better than 2nd
  - ImageNet Localization: 27% better than 2nd
  - COCO Detection: 11% better than 2nd
  - COCO Segmentation: 12% better than 2nd

[He et al., 2015]



# CVPR-2017

| Layers                  | Output Size    | DenseNet-121 DenseNet-169 DenseNet-201                                                       |                                                                                              | DenseNet-264                                                                                 |                                                                                    |      |
|-------------------------|----------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------|
| Convolution             | 112 × 112      | $7 \times 7$ conv, stride 2                                                                  |                                                                                              |                                                                                              |                                                                                    |      |
| Pooling                 | 56 × 56        | $3 \times 3$ max pool, stride 2                                                              |                                                                                              |                                                                                              |                                                                                    |      |
| Dense Block (1)         | 56 × 56        | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$  | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$  | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$  | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix}$ | × 6  |
| Transition Layer (1)    | 56 × 56        | 1 × 1 conv                                                                                   |                                                                                              |                                                                                              |                                                                                    |      |
|                         | 28 × 28        | 2 × 2 average pool, stride 2                                                                 |                                                                                              |                                                                                              |                                                                                    |      |
| Dense Block<br>(2)      | 28 × 28        | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix}$ | × 12 |
| Transition Layer (2)    | 28 × 28        | $1 \times 1$ conv                                                                            |                                                                                              |                                                                                              |                                                                                    |      |
|                         | 14 × 14        | 2 × 2 average pool, stride 2                                                                 |                                                                                              |                                                                                              |                                                                                    |      |
| Dense Block<br>(3)      | 14 × 14        | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 24$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 48$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix}$ | × 64 |
| Transition Layer (3)    | $14 \times 14$ | $1 \times 1$ conv                                                                            |                                                                                              |                                                                                              |                                                                                    |      |
|                         | 7 × 7          | 2 × 2 average pool, stride 2                                                                 |                                                                                              |                                                                                              |                                                                                    |      |
| Dense Block<br>(4)      | 7 × 7          | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 16$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix}$ | × 48 |
| Classification<br>Layer | $1 \times 1$   | 7 × 7 global average pool                                                                    |                                                                                              |                                                                                              |                                                                                    |      |
|                         |                | 1000D fully-connected, softmax                                                               |                                                                                              |                                                                                              |                                                                                    |      |









Keras.io/applications

ILSVRC'14 GoogleNet ILSVRC'14 VGG

ILSVRC'13

ILSVRC'12 AlexNet





## t-SNE visualization of CNN codes





## **Data Augmentation**

- change the pixel without changing the label
- Train on transformed data
- very widely used



- 1. Horizontal flips
- 2. Random Crops / Scales
- 3. Random jitter



- Horizontal flips
   Random Crops / Scales
- 1. Horizontal flips
- 2. Random Crops / Scales
- 3. Random jitter
- 4. Be Creative:
  - · Random Combination of:
    - 1. Translation
    - 2. Rotation
    - 3. Stretching
    - 4. Shearing
    - 5. Lens distortion





## **Transfer Learning**

#### Transfer Learning or Domain Adaptation:

- Very few people train an entire CNN from scratch, because we do not have enough data
- It is common to use from pretrained model trained on very large dataset which contains 1.2 million large images with 1000 categories.
- Using ConvNet as an initialization or feature extractor!
- Two different scenario for using pretrained model:
  - ConvNet as fixed feature extractor: CNN Codes
  - · Fine-tuining the Convnet:
    - Replace the last fully-connected layers with new one with random weight and train their weights again.
    - If you have more data, you can retrain more layers with "backprop"

#### Transfer Learning or Domain Adaptation:

#### When and how to fine tune:

- 1. New dataset is small and is similar to original dataset:
  - No need to retrain high level features in CNN If you do, you overfit
  - Just need to retrain the classifier part of model
- 2. New dataset is large and is similar to original dataset:
  - Retrain all the weights in the network
- 3. New dataset is small and are totally different from original dataset:
  - Train the classifier not on top of the network but on top of earlier layers
- 4. New dataset is large and are totally differenet
  - Just fine tune all the weights but using the pretrained model as an initialization







# Transfer

## Transfer Learning or Domain Adaptation:

- Very few people train an entire CNN from scratch, because we do not have enough data
- It is common to use from pretrained model trained on very large dataset which contains 1.2 million large images with 1000 categories.
- Using ConvNet as an initialization or feature extractor!
- Two different scenario for using pretrained model:
  - ConvNet as fixed feature extractor: CNN Codes
  - Fine-tuining the Convnet:
    - Replace the last fully-connected layers with new one with random weight and train their weights again.
    - If you have more data, you can retrain more layers with "backprop"



## Transfer Learning or Domain Adaptation:

- Very few people train an entire CNN from scratch, because we do not have enough data
- It is common to use from pretrained model trained on very large dataset which contains 1.2 million large images with 1000 categories.
- Using ConvNet as an initialization or feature extractor!
- Two different scenario for using pretrained model:
  - ConvNet as fixed feature extractor: CNN Codes
  - Fine-tuining the Convnet:
    - Replace the last fully-connected layers with new one with random weight and train their weights again.
    - If you have more data, you can retrain more layers with "backprop"





# er Learning

## Transfer Learning or Domain Adaptation:

#### When and how to fine tune:

- 1. New dataset is small and is similar to original dataset:
  - No need to retrain high level features in CNN If you do, you overfit
  - Just need to retrain the classifier part of model
- 2. New dataset is large and is similar to original dataset:
  - Retrain all the weights in the network
- 3. New dataset is small and are totally different from original dataset:
  - Train the classifier not on top of the network but on top of earlier layers
- 4. New dataset is large and are totally differenet
  - Just fine tune all the weights but using the pretrained model as an initialization



#### Hansiel Leathing of Domain Adaptation.

#### When and how to fine tune:

- 1. New dataset is small and is similar to original dataset:
  - No need to retrain high level features in CNN If you do, you overfit
  - Just need to retrain the classifier part of model
- 2. New dataset is large and is similar to original dataset:
  - Retrain all the weights in the network
- 3. New dataset is small and are totally different from original dataset:
  - Train the classifier not on top of the network but on top of earlier layers
- 4. New dataset is large and are totally differenet
  - Just fine tune all the weights but using the pretrained model as an initialization













Bot

#### some useful links:

- · https://mitpress.mit.edu/books/deep-learning
- https://github.com/Alireza-Akhavan/TensorFlow-Examples
- http://bigdataworkgroup.ir/
- https:/flyyufelix.github.io/2016/10/03/fine-tuning-in-keras-part1.html
- https://github.com/Alireza-Akhavan/class.vision

• Telegram:

'

- @cvision
- $\bullet \textit{ @} deep learning.ir$
- @http://qa.deeplearning.ir
- @irandeeplearning



Kaggle.com



# **Evaluation** Speed Wide Deep Accuracy



### Do Our Brains Use Deep Learning to Make Sense of the World?















https://elifesciences.org/articles/22901/figures

Do Our Brains Use Deep Learning to Make Sense of the World?



























# Deep Learning Frameworks

TensorFlow Caffe Keras Theano Lasagne









Lasagne



## **Practice!**

- Transfer Learning (Code)
- Classify new category (Code)
- multi label classification
- Speech Recognition







SmallerVGGNet input: (None, 96, 96, 3) conv2d\_1\_input: InputLayer output: (None, 96, 96, 3) input: (None, 96, 96, 3) conv2d\_1: Conv2D output: (None, 96, 96, 32) (None, 96, 96, 32) activation\_1: Activation output: (None, 96, 96, 32) input: (None, 96, 96, 32) batch\_normalization\_1: BatchNormalization

pyimagesearch.com

pyimagesearch.com





pyimagesearch.com





Figure 1: A montage of a multi-class deep learning dataset. We'll be using Keras to train a multi-label classifier to predict both the color and the type of clothing.

pyimagesearch.com

pyimagesea





## SmallerVGGNet



pyimagesearch.com













https://blog.manash.me/building-a-dead-simple-word-recognition-engine-using-convnet-in-keras-25e72c19c12b













## **Single Word Speech**



Audio Embedding





**Embedding** 

[0.5, 0.8, 0.1]





cat happy





What?

Deep Learning

Why?

How?



Thank You for attention:)

Any Question?



Thank You for attention :)

Any Question?







