



Introduction to Deep Learning (CNNs)

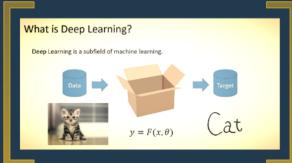
Mahya Mohammadi Kashani CSNN, April 2018 Shahid Rajaee Teacher Training University

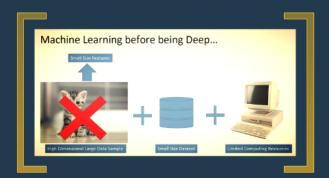
Out Line

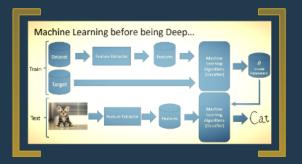
- Review of Machine Learning (Classification)
- Why is Deep Learning?
- Applications
- Challenges
- Structures of CNNs
- Learning tricks
- CNN Architectures
- relation between DL and Brain!
- Implementations (TensorFlow, Keras)
- Deep models in AIA Task
- Conclusion
- References

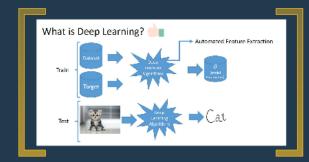
What is Deep Learning? Deep Learning is a subfield of mechine learning. $y = F(x, \theta)$ Target

Introduction





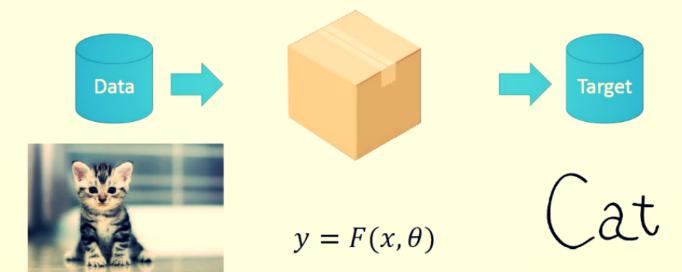




credit : UTDLSS2017

What is Deep Learning?

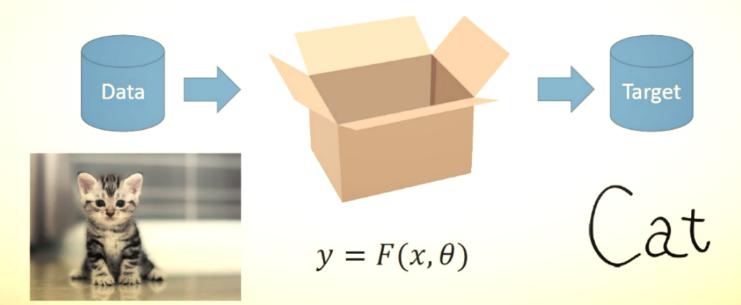
Deep Learning is a subfield of machine learning.



Introduction

What is Deep Learning?

Deep Learning is a subfield of machine learning.

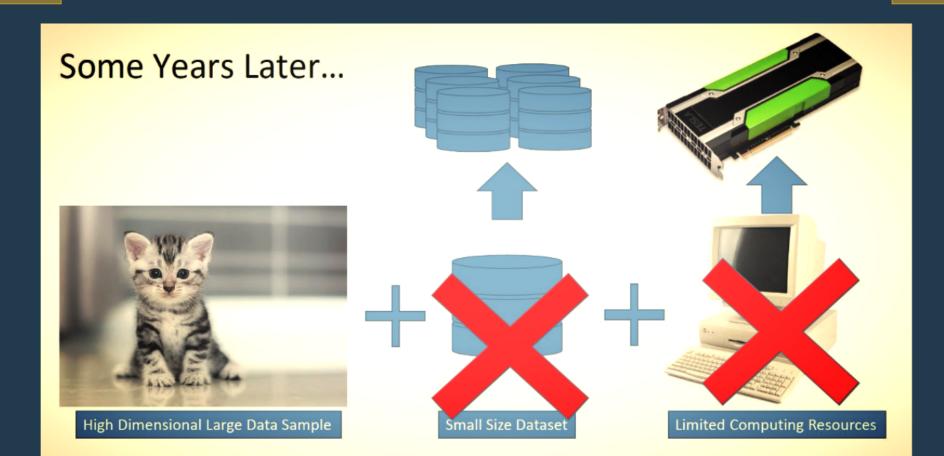


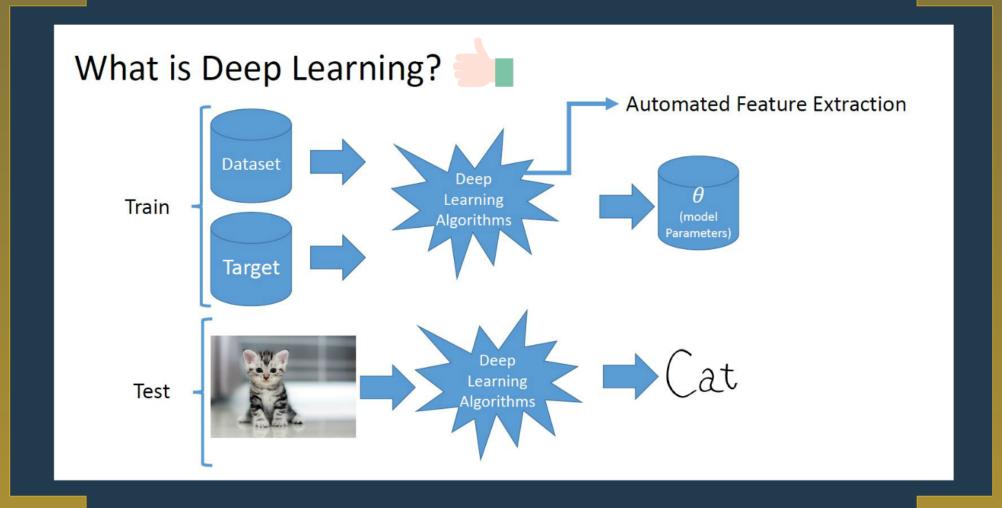
Small Size Dataset

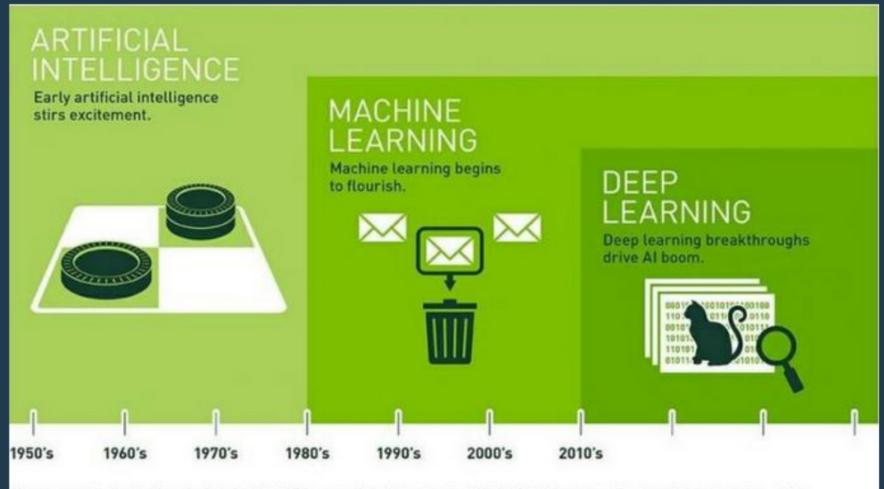
Limited Computing Resources

High Dimensional Large Data Sample

Machine Learning before being Deep... **Feature Extractor** Dataset **Features** Machine Learning Train = **Algorithms** (model Parameters) (Classifier) Target Machine Learning Feature Extractor Test **Features** Algorithms (Classifier)

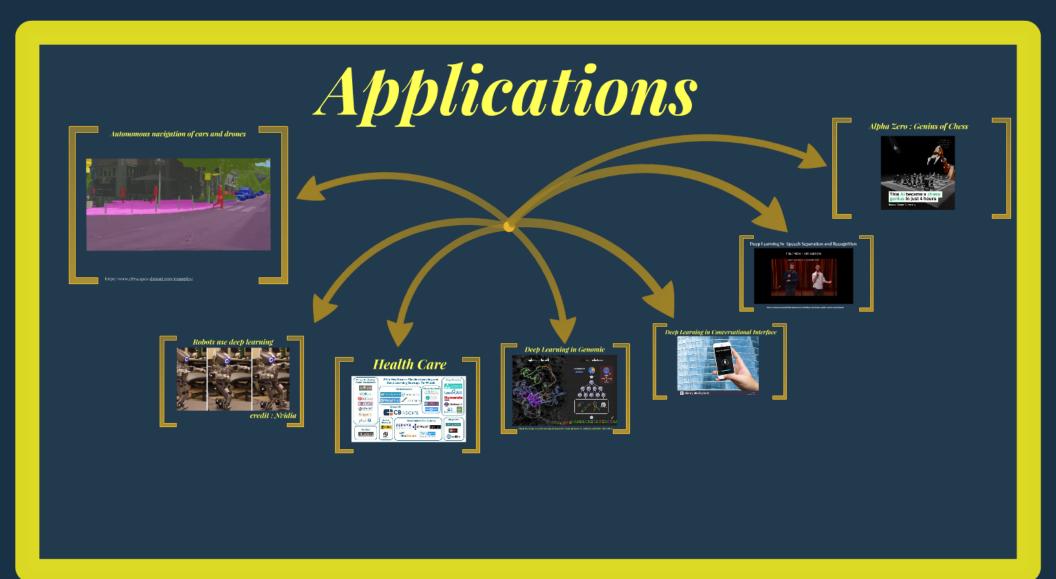






Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

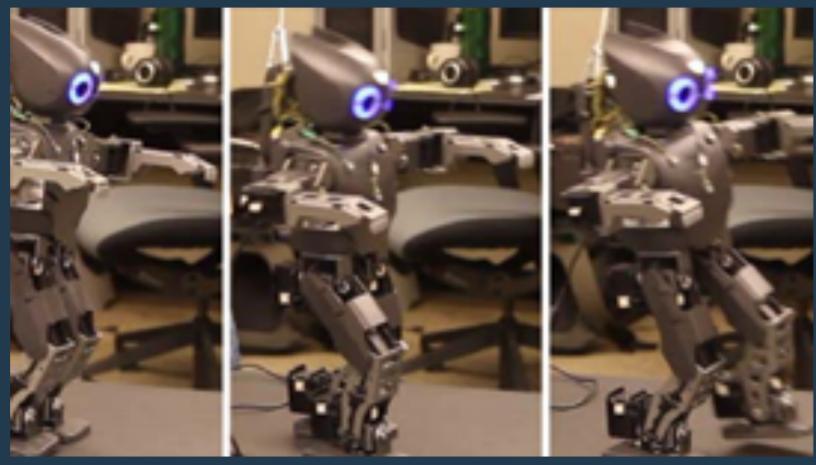
credit : Nvidia



Autonomous navigation of cars and drones

Autonomous navigation of cars and drones

Robots use deep learning



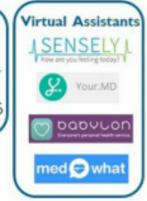
credit : Nvidia

Health Care

Al In Healthcare: Machine Learning and

CBINSIGHTS

Created By



Deep Learning in Conversational Interface

a alamy stock photo

JKF3XJ www.alamy.com

Deep Learning in Speech Separation and Recognition

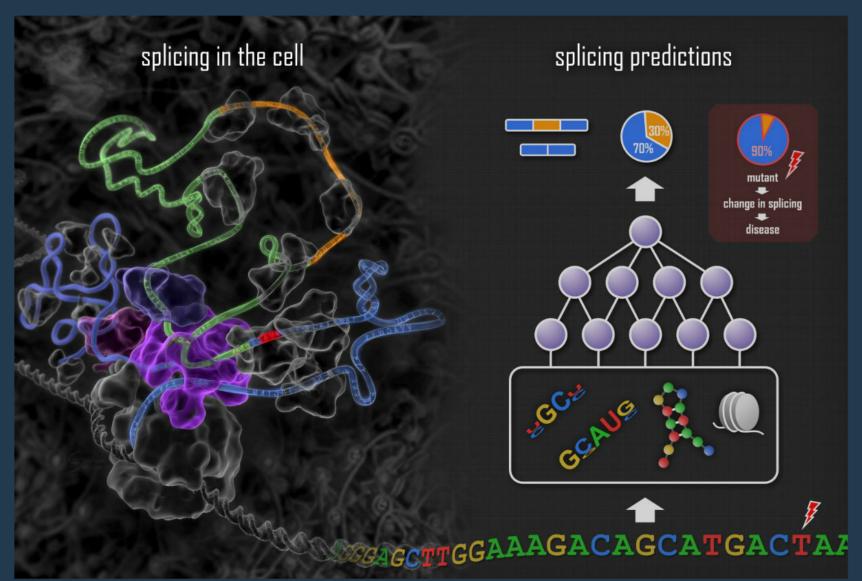
https://research.googleblog.com/2018/04/looking-to-listen-audio-visual-speech.html

Deep Learning in Speech Separation and Recognition

https://research.googleblog.com/2018/04/looking-to-listen-audio-visual-speech.html

Alpha Zero: Genius of Chess

Deep Learning in Genomic



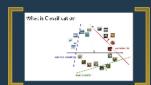
'Deep learning' reveals unexpected genetic roots of cancers, autism and other disorders

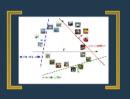
Image Classification

Assume: you have given a set dicrete labels: {Cat, Dog, Bus, Tree, ... }

Cat

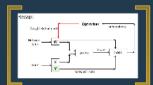
Classification

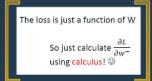


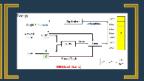


Weight Regularization

Optimization

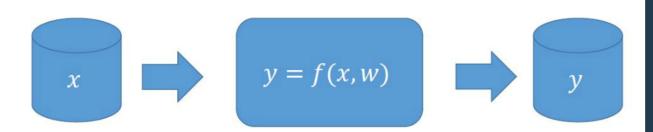






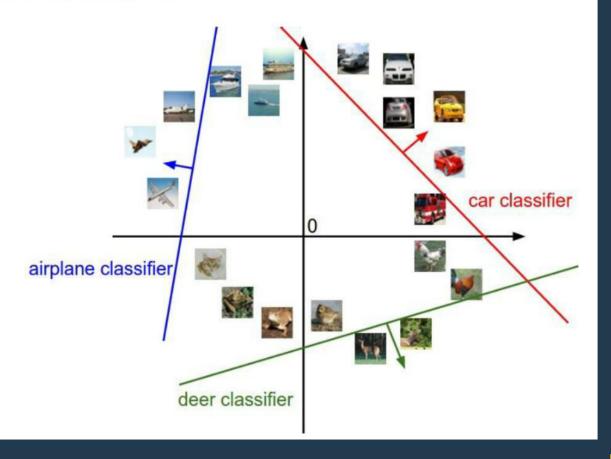
Credit: CS231,N Stanford

Machine Learning Problem



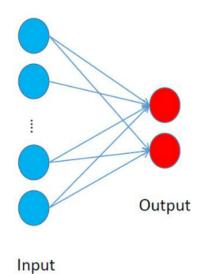
- f() is pre-determined.
- w is the model parameters which need to be learned from data.

What is Classification:

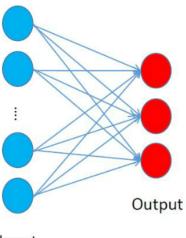


Linear Classifiers:

Two class Classification

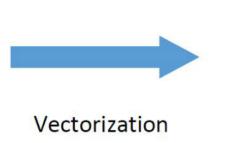


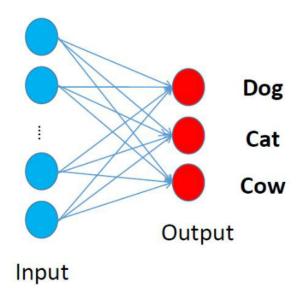
Multiclass Classification: More than 2 outputs



Linear Classifiers:

Input





Weight

Loss function

Example: Suppose 3 images, 3 classes

$$f(x; W) = Wx$$

Dog

3.2

Cat

5.1

Cow

-1.7

Multiclass SVM Loss:

Given an example (x_i, y_i) where x_i is the input sample and y_i is the (integer) label. Also We define $s = f(x_i; W)$ The SVM formula is:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$L_i = \max(0, 5.1 - 3.2 + 1) + \max(0, -1.7 - 3.2 + 1)$$

$$L_i = 2.9 + 0 = 2.9$$

Example: Suppose 3 images, 3 classes

$$f(x; W) = Wx$$

Multiclass SVM Loss:

Given an example (x_i, y_i) where x_i is the input sample and y_i is the (integer) label. Also We define $s = f(x_i; W)$

The SVM formula is:

 $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

 $L_i = \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1)$

 $L_i = 0 + 0 = 0$

Dog

Cat

Cow

2.0

4.9

1.3

Dog

1.3

Cat

4.9

Cow

2.0

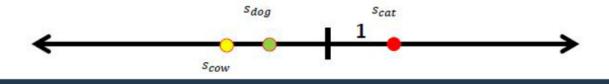
Multiclass SVM Loss:

Given an example (x_i, y_i) where x_i is the input sample and y_i is the (integer) label. Also We define $s = f(x_i; W)$ The SVM formula is:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Credit: CS231N Stanford

Interpretation: when loss is zero



Example: Suppose 3 images, 3 classes

$$f(x; W) = Wx$$

Multiclass SVM Loss:

Given an example (x_i, y_i) where x_i is the input sample and y_i is the (integer) label. Also We define $s = f(x_i; W)$ The SVM formula is:

Dog 2.2
Cat 2.5
Cow -3.1

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$L_i = \max(0, 2.2 + 3.1 + 1) + \max(0, 2.5 + 3.1 + 1)$$

$$L_i = 6.3 + 6.6 = 12.9$$

Credit: CS231N Stanford

Loss Formula for all samples:

$$f(x; W) = Wx$$

$$L = \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

There is a bug here

Suppose that we found a W such that L=0, is this W unique?

Weight Regularization

f(x;W) = Wx

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Before:

 $L_i = \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1)$

$$L_i = 0 + 0 = 0$$

Dog

36

Cat

Cow

1.3

4.9

2.0

With W twice as large:

$$L_i = \max(0, 2.6 - 9.8 + 1) + \max(0, 4.0 - 9.8 + 1)$$

$$L_i = 0 + 0 = 0$$

Weight Regularization:

$$f(x; W) = Wx$$

$$L = \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1) + \lambda R(W)$$

- L2 norm: $R(W) = \sum_{i} \sum_{j} W_{i,j}^2$
- L1 norm: $R(W) = \sum_{i} \sum_{j} |W_{i,j}|$

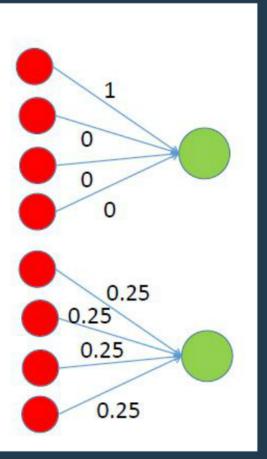
Weight Regularization Example:

$$x = [1,1,1,1]$$

$$W_1 = [1,0,0,0]$$

$$W_2 = [0.25, 0.25, 0.25, 0.25]$$

$$W_1^T.x = W_2^T.x = 1$$



Softmax Classifier:

$$f(x;W)=Wx$$

scores: un-normalized log probabilities of classes

$$P(Y = k | X = x_i) = \frac{e^{s_i}}{\sum_j e^{s_j}} \quad \text{where} \quad s = f(x_i; W)$$

Want to maximize the log likelihood or (for loss function) minimize the negative log-likelihood of the correct class:

$$L_i = -logP(Y = k|X = x_i)$$

Dog

3.2

Cat

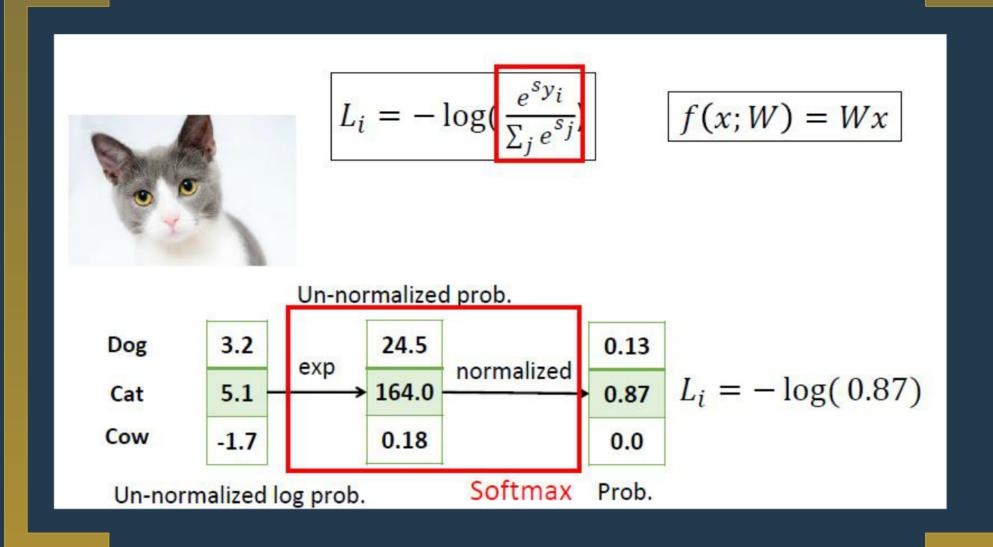
5.1

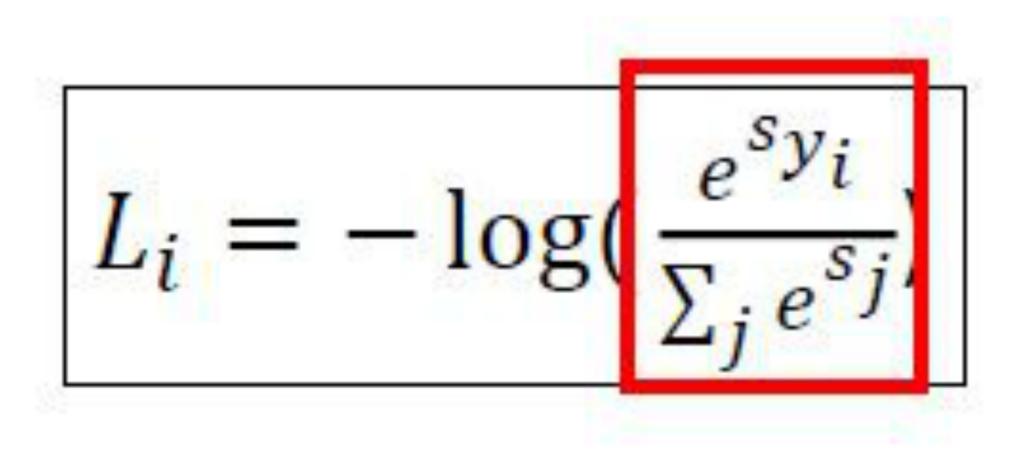
Cow

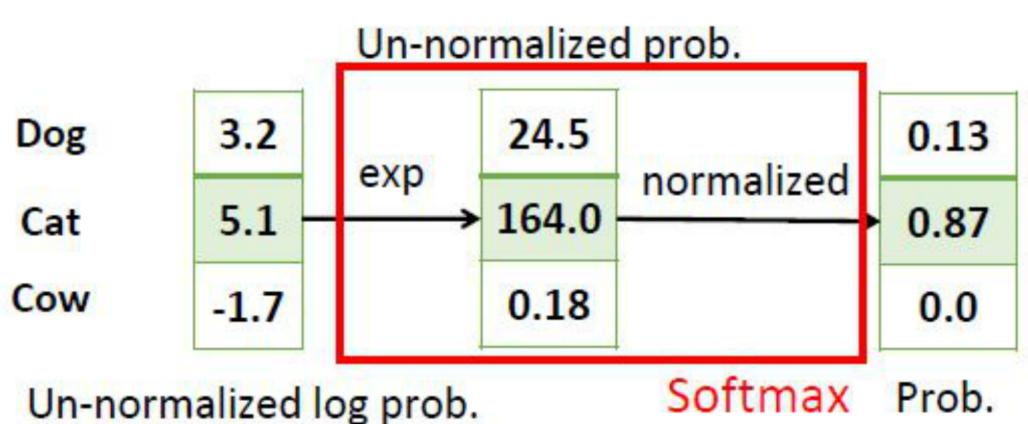
-1.7

$$L_i = -\log(\frac{e^{sy_i}}{\sum_j e^{s_j}})$$

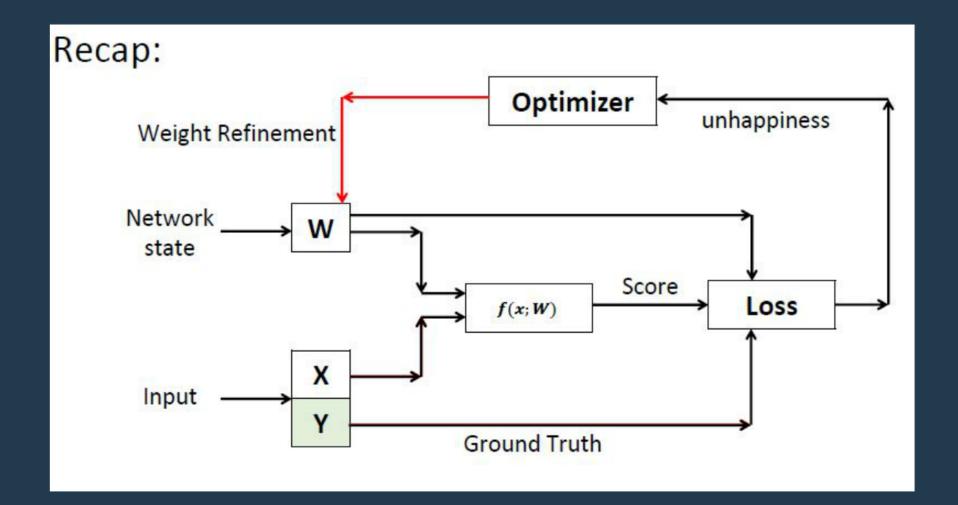
Credit: CS231N Stanford





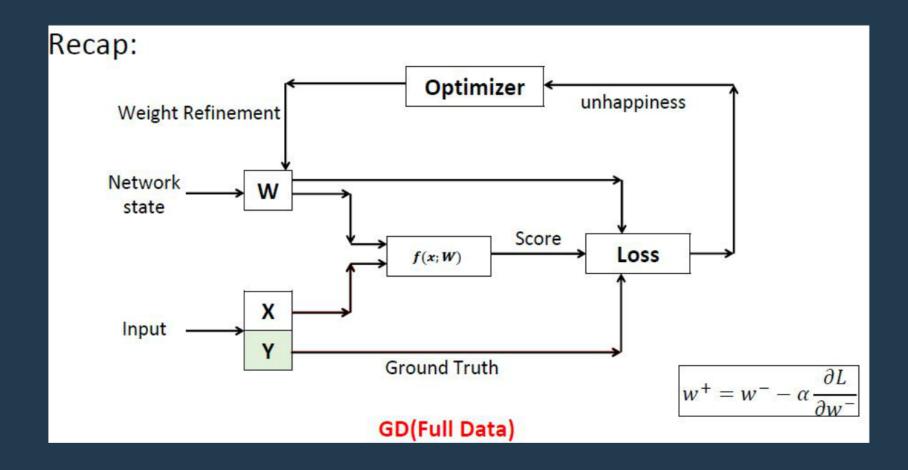


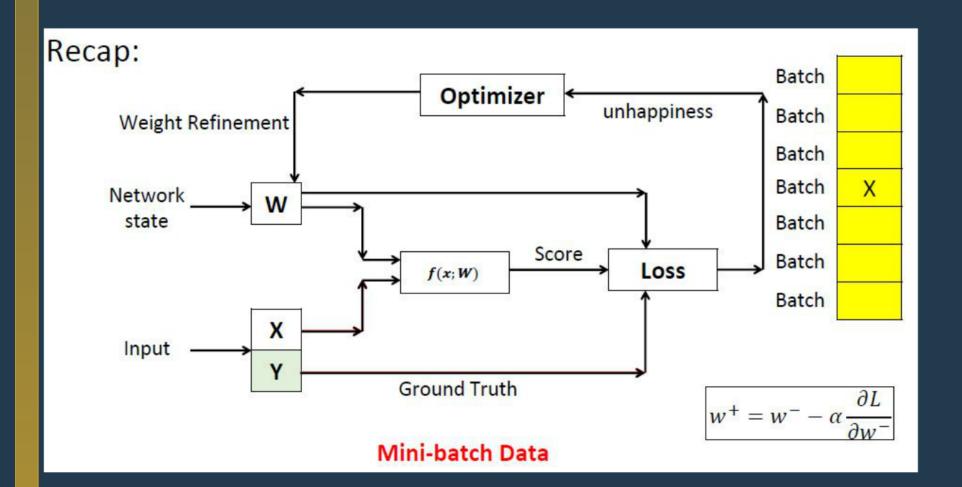
Optimization

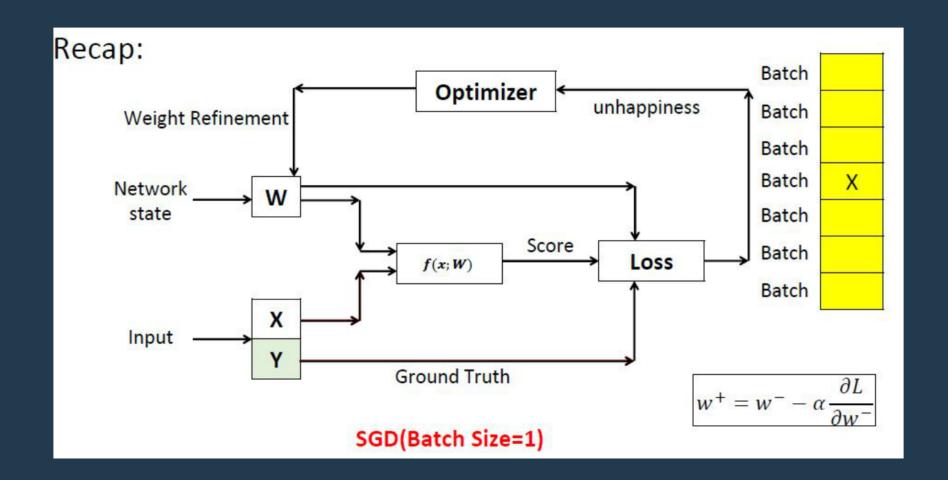


The loss is just a function of W

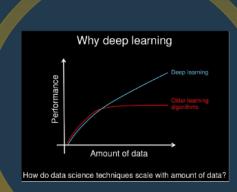
So just calculate $\frac{\partial L}{\partial w}$ using calculus! \odot



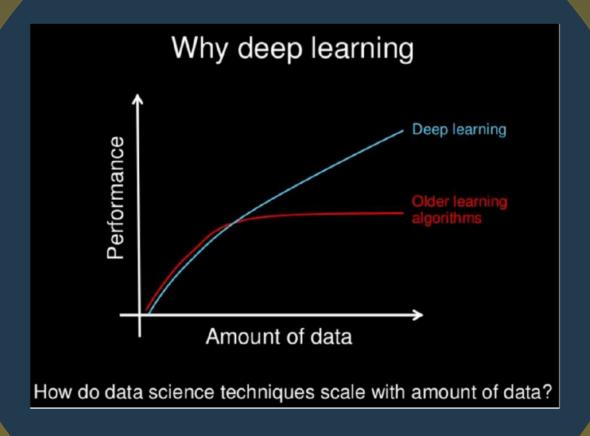




Why Deep Learning?

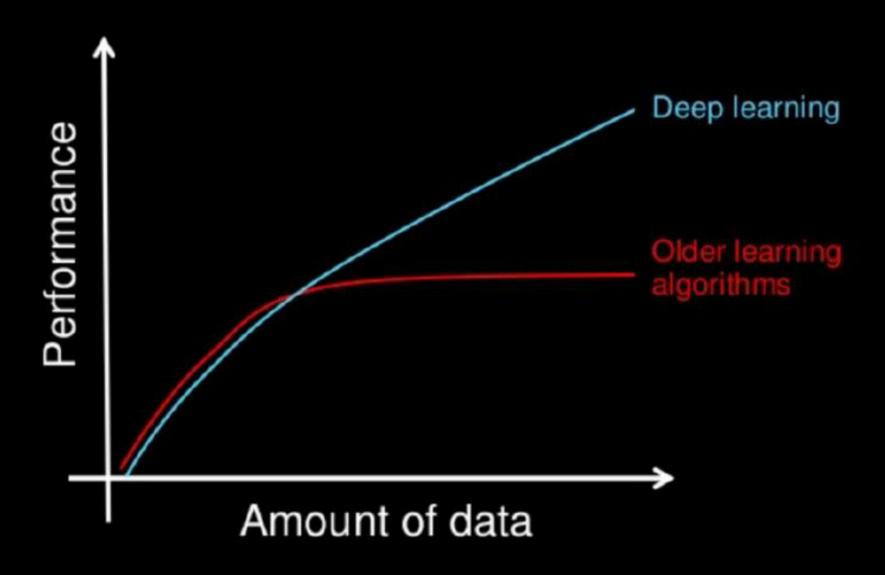


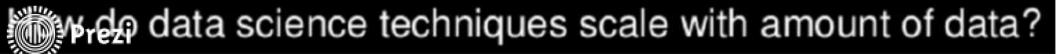
Why Deep learning, Slide by Andrew NG

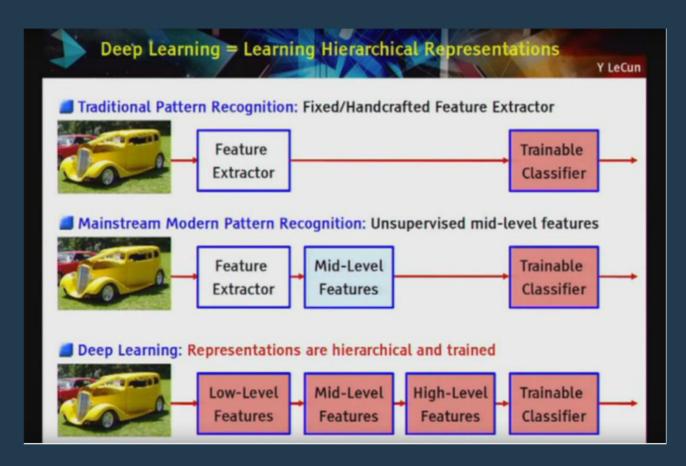


Why Deep learning, Slide by Andrew NG

Why deep learning







Deep Learning = Learning Hierarchical Representations Slide by Yann LeCun

Important Property of Neural Networks

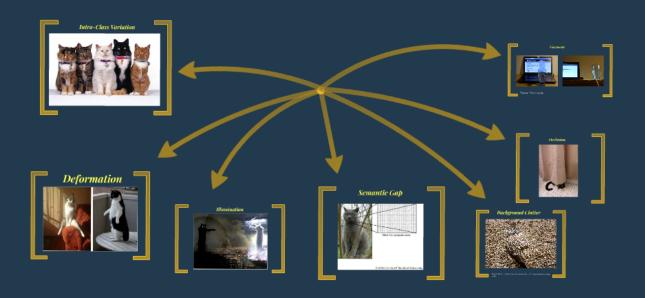
Results get better with

more data + bigger models + more computation

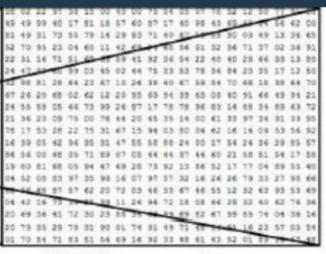
(Better algorithms, new insights and improved techniques always help, too!)

Result Get Better With More Data, Larger Model, More Computation, Slide by Jeff Dean

challenges



Semantic Gap



What the computer sees

Cs231n-Lecture2-Stanford University

Viewpoints

Thoma, Martin (2016).

Illumination

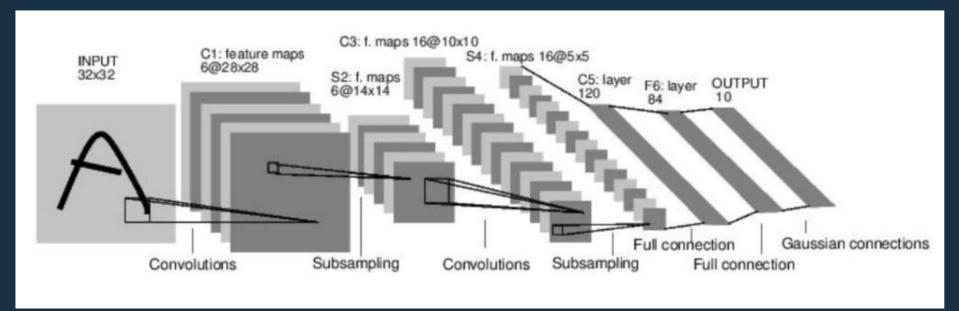
Deformation

Background Clutter

Thoma, Martin. "A survey of semantic segmentation." arXiv preprint arXiv:1602.06541 (2016).

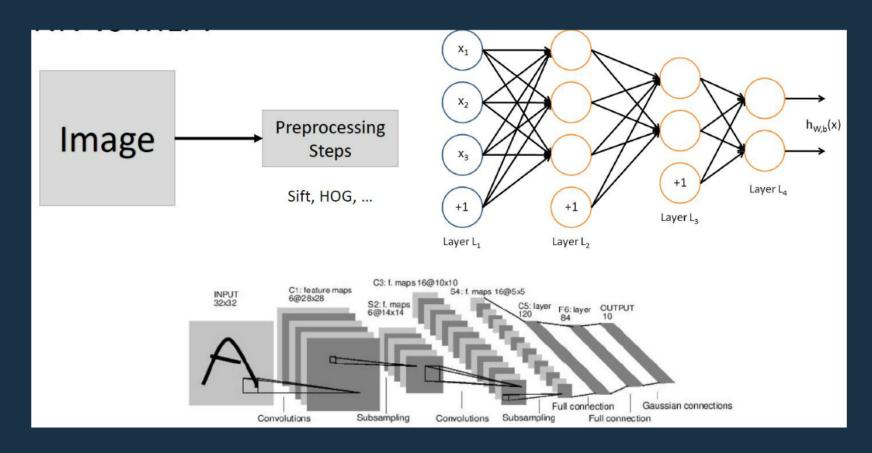
Intra-Class Variation

Convolutional Neural Network:

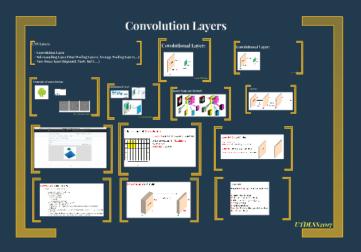


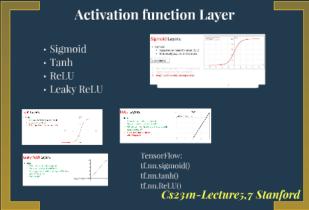
LeNet5-LeCun 1998

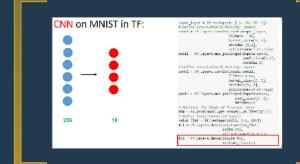
CNN vs MLP:



CNN Structure







Cor

CNN Layers:

- Convolution Layer
- · Sub sampling Layer (Max Pooling Layers, Average Pooling Layers,...)
- · Non-linear layer (Sigmoid, Tanh, ReLU,...)

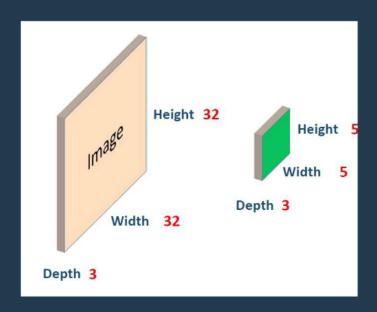
Example of convolution:

Covolutional Layer:



Credit: UTDLSS2017

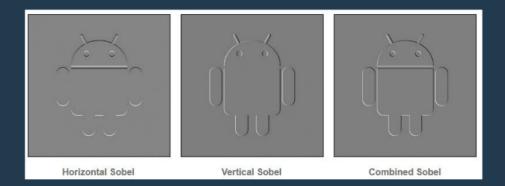
Covolutional Layer:



Credit: UTDLSS2017

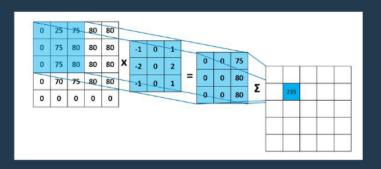
Example of convolution:

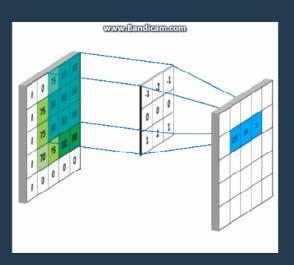
-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1
Finds horizontals			 Finds verticals		

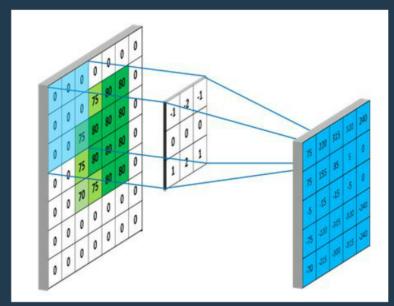


https://mlnotebook.github.io/post/CNN1/

Covolutional Layer:

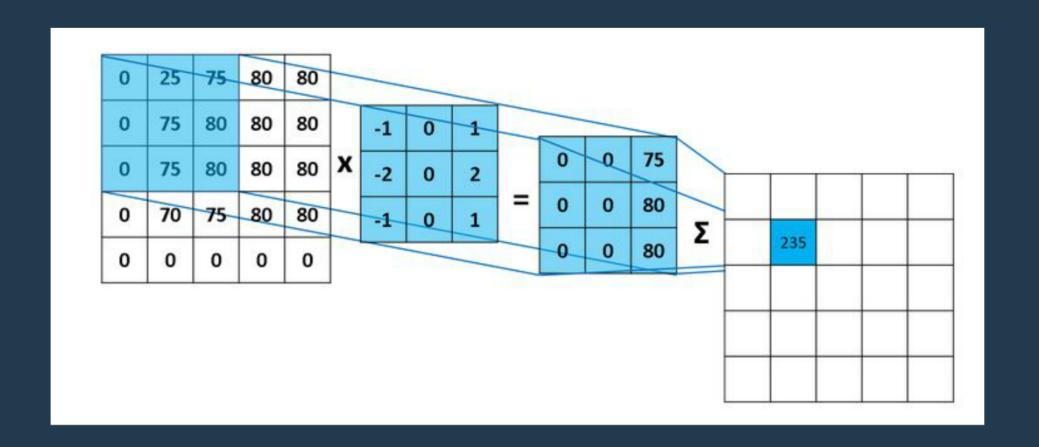


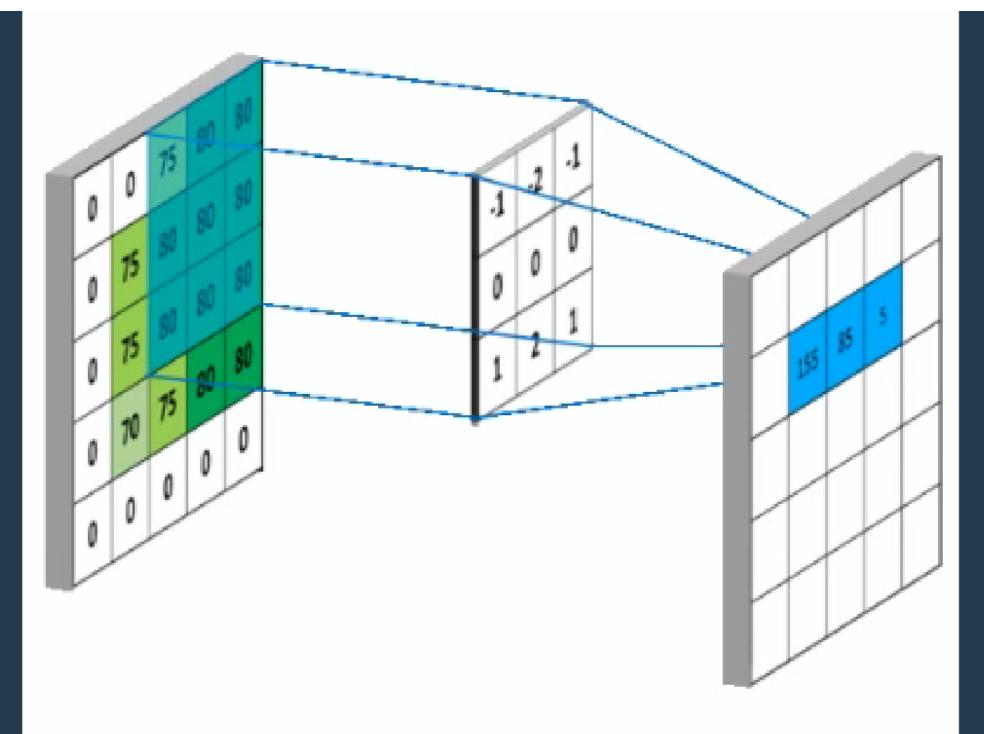


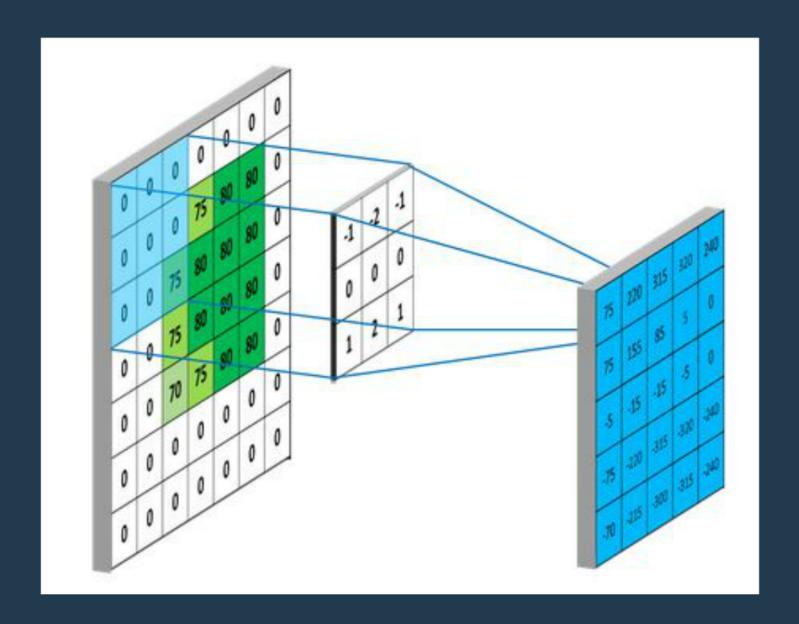


https://mlnotebook.github.io/post/CNN1

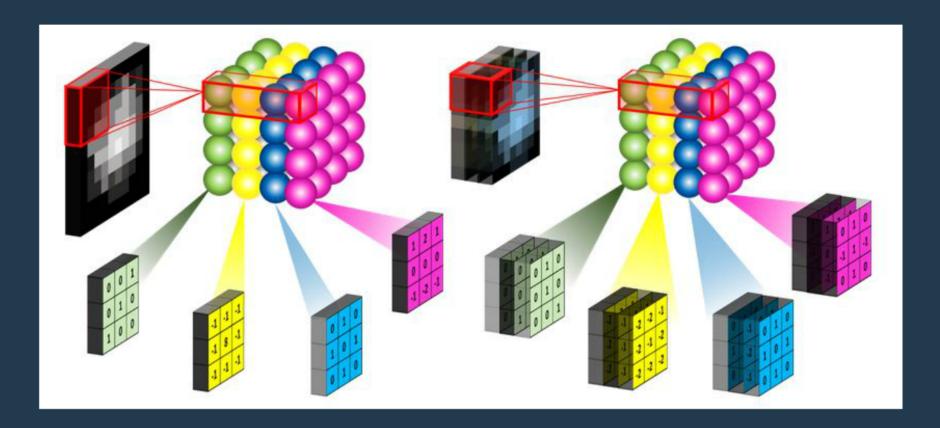
Govonulonal Layer



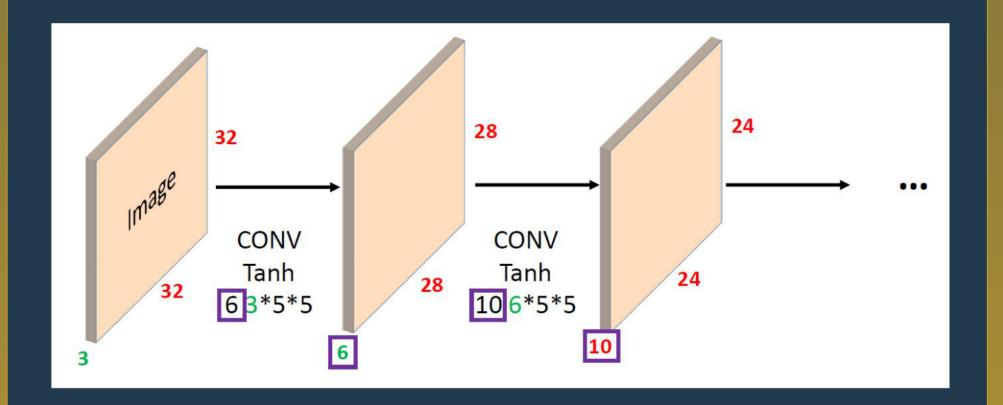


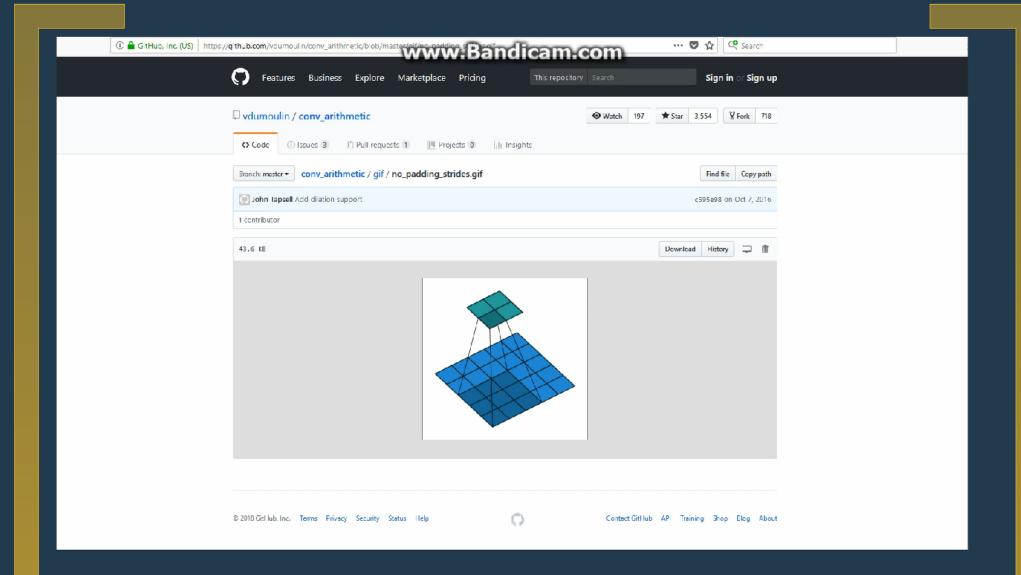


more than one Kernel:

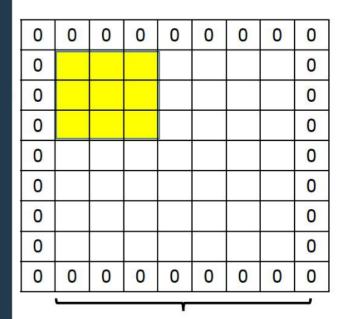


ConvNet:





Closer Look at Convolution:



Practical Note: In practice, It is common to zero pad.

Output Size formula: (N - F)/stride + 1

N = 9, S=1, F=3

Output Size: (9-3)/1+1=7

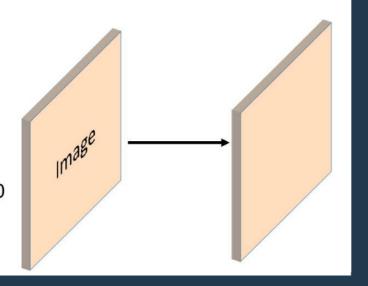
Convolution Example:

Input size: 3*32*32

Filter size: 20 3*5*5, Padding=2 and Stride 1

Output size: (32+4-5)/1+1=32 -> 20*32*32

Number of Learnable Parameters: 20*3*5*5=1500

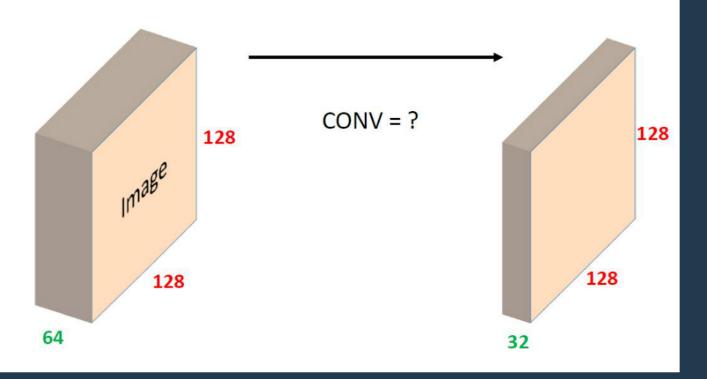


Convolution Summary:

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - · the stride S.
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $\circ \; H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Convolution Example:



TensorFlow:

tf.layers.conv2d(I, O, F, S, P, use_bias=True)

I: Tensor Input (inputs)

O: Output cube depth (filters)

F: Filter spatial size (Kernel_size)

S: Stride (strides)

P: Padding (padding)

Use_bias: If is true, then you define a bias

term for each filter

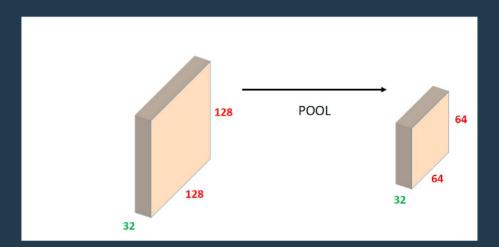
...

Pooling Layer

Common Setting:

F = 2, S = 2

F = 3, S = 2



1	2	6	5
0	3	1	5
7	2	9	1
4	8	10	0

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires three hyperparameters:
 - \circ their spatial extent F,
 - \circ the stride S,
- ullet Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F)/S + 1$
 - $H_2 = (H_1 F)/S + 1$
 - $\circ D_2 = D_1$
- · Introduces zero parameters since it computes a fixed function of the input
- . Note that it is not common to use zero-padding for Pooling layers

TensorFlow:

tf.layers.max_pooling2d(I,F,S,P)

I: Tensor Input (inputs)

F: Filter spatial size (pool_size)

S: Stride (strides)

P: Padding (padding)

Cs231n-Lecture7 Stanford

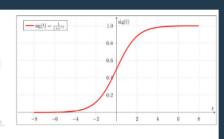
Activation function Layer

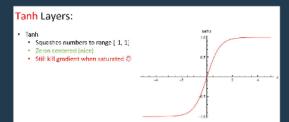
- Sigmoid
- Tanh
- ReLU
- Leaky ReLU

- Sigmoid
- Squashes numbers to range [0, 1]
- · Historically popular in literature.

3 problems:

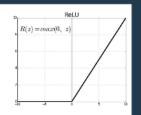
- 1. Saturated neurons "kill" the grad
- Sigmoid are not zero centered.
- 3. exp() is a bit compute expensive.





ReLU Layers:

- Relt
- · Does not saturate (in +region)
- · Very computationally efficient
- Converges much faster that sigmoid/tanh in practice (e.g. 6x)
- · Not zero centered output
- An annoyance



TensorFlow: tf.nn.sigmoid() tf.nn.tanh() tf.nn.ReLU()

Cs231n-Lecture5,7 Stanford

- Sigmoid
- Tanh
- ReLU
- Leaky ReLU

moid Layers:

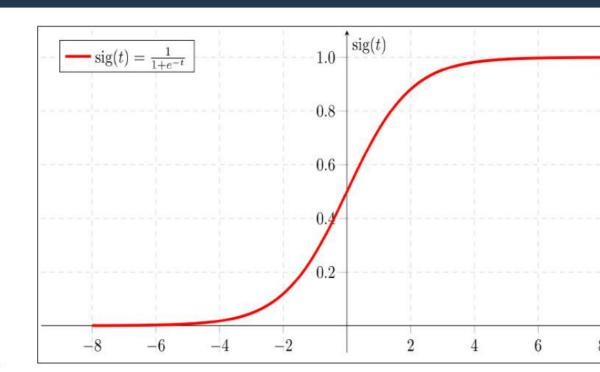
Sigmoid

- Squashes numbers to range [0, 1]
- Historically popular in literature.

roblems:

Saturated neurons "kill" the gradient. Sigmoid are not zero centered.

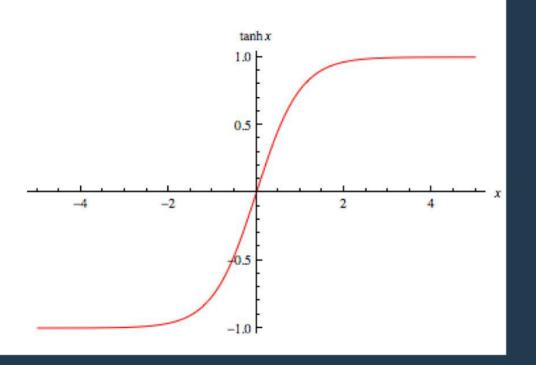
exp() is a bit compute expensive.



Domy Roll

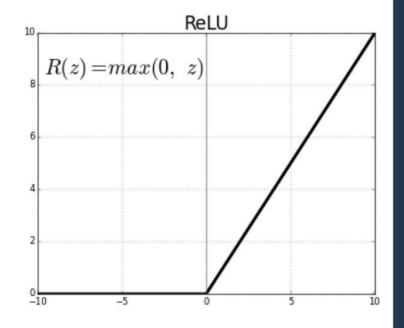
Tanh Layers:

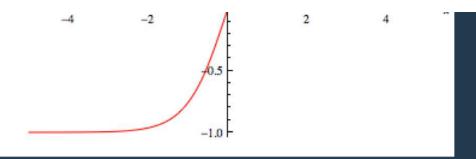
- Tanh
 - Squashes numbers to range [-1, 1]
 - Zeros centered (nice)
 - Still kill gradient when saturated 🕾



ReLU Layers:

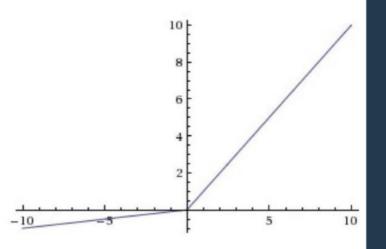
- ReLU
 - Does not saturate (in +region)
 - Very computationally efficient
 - Converges much faster that sigmoid/tanh in practice (e.g. 6x)
 - Not zero centered output
 - An annoyance





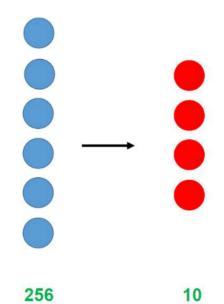
Leaky ReLU Layers:

- ReLU
 - Does not saturate (in +region)
 - Very computationally efficient
 - Converges much faster that sigmoid/tanh in practice (e.g. 6x)
 - Will not die



TensorFlow: tf.nn.sigmoid() tf.nn.tanh() tf.nn.ReLU()

CNN on MNIST in TF:



```
input layer = tf.reshape(x, [-1, 28, 28, 1])
# Define Convolution(& Pooling) Layer1
conv1 = tf.layers.conv2d(inputs=input_layer,
                         filters = 16,
                         kernel_size=[5, 5],
                         strides=[1,1],
                         activation=tf.nn.relu)
pool1 = tf.layers.max pooling2d(inputs=conv1,
                                 pool_size=[2,2],
                                 strides=2)
# Define Convolution(& Pooling) Layer2
conv2 = tf.layers.conv2d(inputs=pool1,
                         filters = 64,
                         kernel_size=[5, 5],
                         strides=[1, 1],
                         activation=tf.nn.relu)
pool2 = tf.layers.max_pooling2d(inputs=conv2,
                            pool_size=[2, 2],
                            strides=2)
# Multiply The Shape of Previous Layer
dim = np.prod(pool2.get_shape().as_list()[1:])
# Define Fully Connected Layers
relu2_flat = tf.reshape(pool2, [-1, dim])
fc1 = tf.layers.dense(inputs=relu2_flat,
                      units=256,
                      activation=tf.nn.relu)
fc2 = tf.layers.dense(inputs=fc1,
                      units=n_classes)
```


deep visualization ToolBox

Deep Visualization Toolbox

yosinski.com/deepvis

#deepvis

Jason Yosinski

Jeff Clune

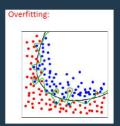
Anh Nguyen

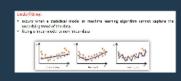
Thomas Fuchs

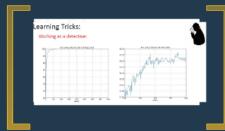
Hod Lipson

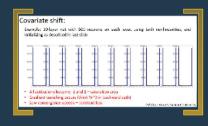
Advance info about Learning

- Learning Tricks
- Dropout
- Weight Initialization
- · Batch Normalization



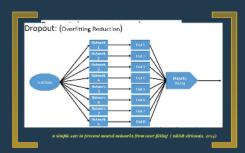




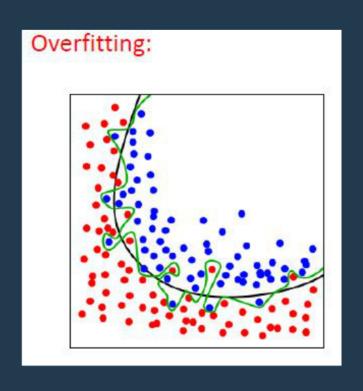


Regularization Technique:

- L2 norm
- Lı norm
- · Dropout!

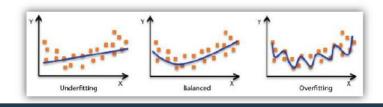


Advance info about Lea



Underfitting:

- occurs when a statistical model or machine learning algorithm cannot capture the underlying trend of the data.
- · fitting a linear model to non-linear data

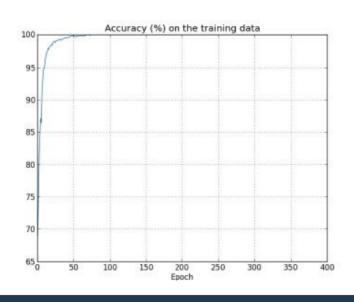


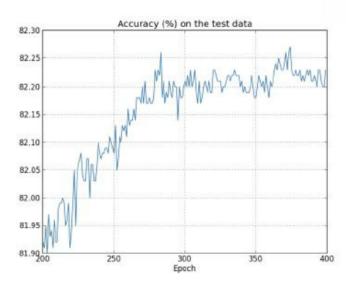
Regularization Technique:

- L2 norm
- L1 norm
- Dropout!

Learning Tricks:

Working as a detective:





Learning Tricks:

Some Rules for train a classifier

Split your data into 3 parts:

- 1. Training data: for learning the weight of the network
- 2. Validation data: For detecting overfitting
- 3. Test data: For measuring the accuracy of your model

Validation data is not only used for checking overfitting, but it is usable for defining hyper-parameters (structural parameters):

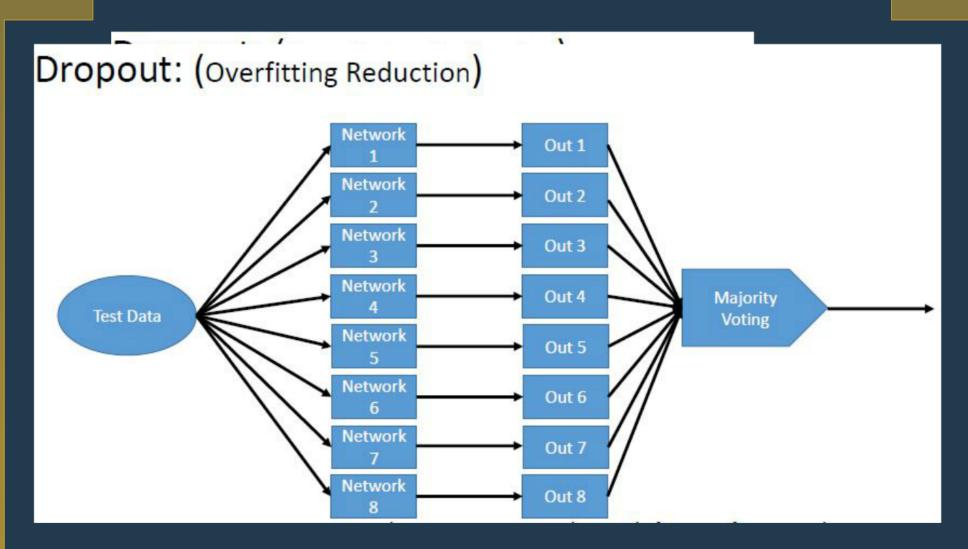
- 1. # epochs to train for
- 2. Best network architecture
- 3. Learning Rate
- 4. ...

Covariate shift:

Example: 10-layer net with 500 neurons on each layer, using tanh nonlinearities, and initializing as described in last slide

Regularization Technique:

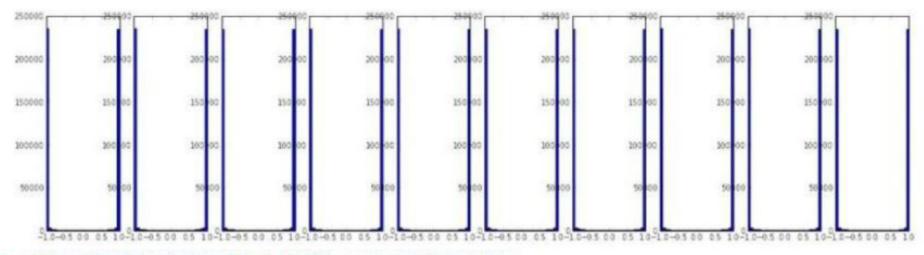
- L2 norm
- Li norm
- Dropout!



a simple way to prevent neural networks from over fitting (nitish sirivasta, 2014)

Covariate shift:

Example: 10-layer net with 500 neurons on each layer, using tanh nonlinearities, and initializing as described in last slide

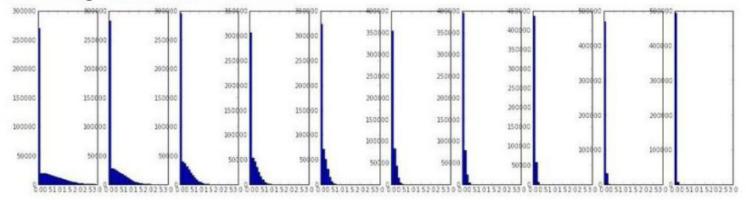


- All activations become -1 and 1 saturation area
- Gradient vanishing occurs (think W*X in backward path)
- Low convergence speeds constant loss

Cs231n-Lecture5-Stanford University

Covariate shift:

Example: 10-layer net with 500 neurons on each layer, using ReLU nonlinearities, and initializing as described in last slide



Cs231n-Lecture5-Stanford University

Batch Normalization:

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Sergey Ioffe, Christian Szegedy - 2015

Architecture of CNN Szepichy, 2012 Szepichy, 2012 Szepichy, 2012 Szepichy, 2014 Szepichy, 2015 Szepichy, 2014 Szepichy, 2015 Szepichy, 2014 Szepichy, 2015 Szepichy,

AlexNet - 2012

Deep Learning Architecture:

AlexNet:

Input: [3*227*227]

Conv1: 96 F=3*11*11, stride=4, padding =0

MaxPool1: F=3*3, Stride=2 Norm1 = Normalization Layer

Conv2: 256 F=96*5*5, stride=1, padding =2

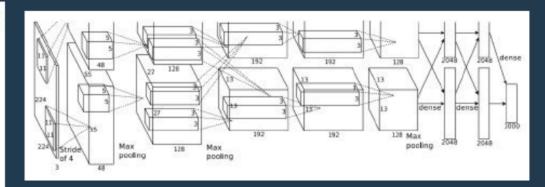
MaxPool2: F=3*3, Stride=2 Norm2 = Normalization Layer

Conv3: 384 F=256*3*3, stride=1, padding = 1 Conv4: 384 F=384*3*3, stride=1, padding = 1 Conv5: 256 F=384*3*3, stride=1, padding = 1

MaxPool3: F=3*3, Stride=2

FC6: 4096 Neurons FC7: 4096 Neurons

FC8: 1000 Neurons (Class Scores)



Input: 256*13*13

Formula: $\frac{(N-F)}{S} + 1$

Output (MaxPool3): 256*6*6

- Using ReLU
- Using Norm Layer
- · Heavy data augmentation
- Dropout = 0.5
- Batch size 128
- SGD momentum 0.9
- Lr=0.01, with decay 0.1
- L2 weight decay 0.0005
- Top 5 error: 18.2% -> ensemble 7 CNN (15.04%)

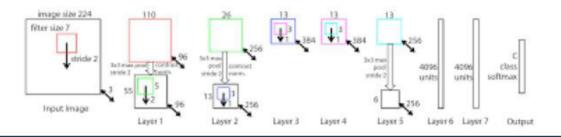
ZF.Net-2013

Deep Learning Architecture:

ZFNet:

It is like AlexNet but:

- Conv1 changes from (11*11 stride 4) to (7*7 stride 2)
- Conv3,4,5: depths change from 384, 384, 256 filters to 512, 1024, 512
- Top 5 error: 14.8



VGGNet-2014

Deep Learning Architecture: VGGNet

- Only Conv with F=3*3 and stride=1, padding=1
- Maxpooling with F=2*2 and Stride 2
- Top 5 Error is: 7.3%

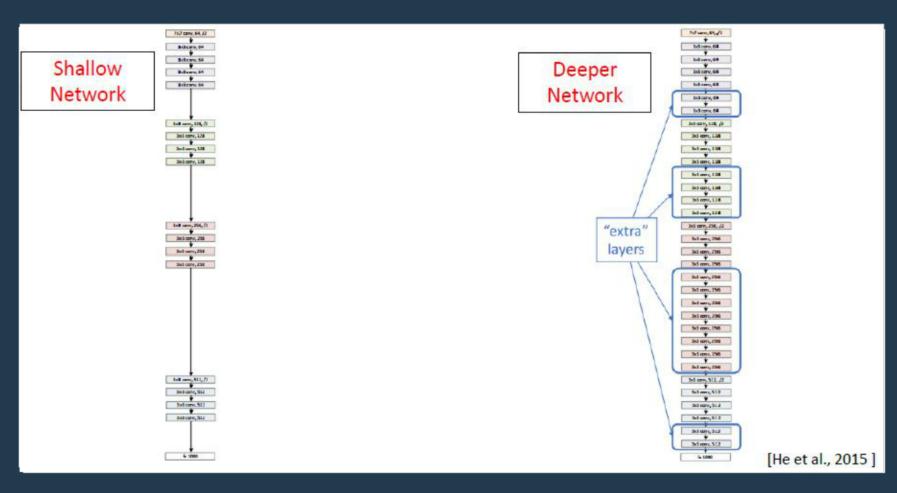
...

		ConvNet C	onfiguration		•
A	A-LRN	В	C	D	Е
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
9 SESTENCE N	l-salesessa				
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
li ili					
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
	(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		1
		FC-	4096		
			4096		
			1000		
		soft	-max		

GoogleNet-2014

Deep Learning Architecture: GoogleNet INCEPTION MODULES AVERNGE POOLING INCEPTION MODULES

ResNet-2015



ResNet-2015

Deep Learning Architecture:

ResNet:

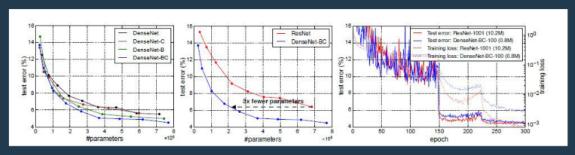
ResNets @ ILSVRC & COCO 2015 Competitions

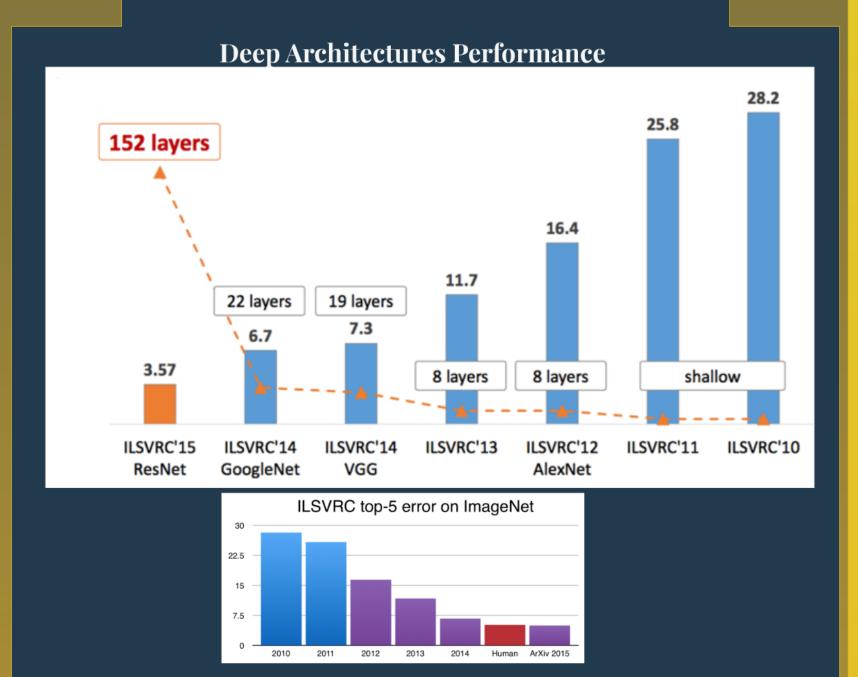
- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

[He et al., 2015]

CVPR-2017

Layers	Output Size	DenseNet-121 DenseNet-169 DenseNet-201		DenseNet-264		
Convolution	112 × 112	7×7 conv, stride 2				
Pooling	56 × 56	3×3 max pool, stride 2				
Dense Block (1)	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix}$	× 6
Transition Layer (1)	56 × 56	1 × 1 conv				
	28 × 28	2 × 2 average pool, stride 2				
Dense Block (2)	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix}$	× 12
Transition Layer (2)	28 × 28	1×1 conv				
	14 × 14	2 × 2 average pool, stride 2				
Dense Block (3)	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix}$	× 64
Transition Layer (3)	14×14	1×1 conv				
	7 × 7	2 × 2 average pool, stride 2				
Dense Block (4)	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix}$	× 48
Classification Layer	1×1	7 × 7 global average pool				
		1000D fully-connected, softmax				



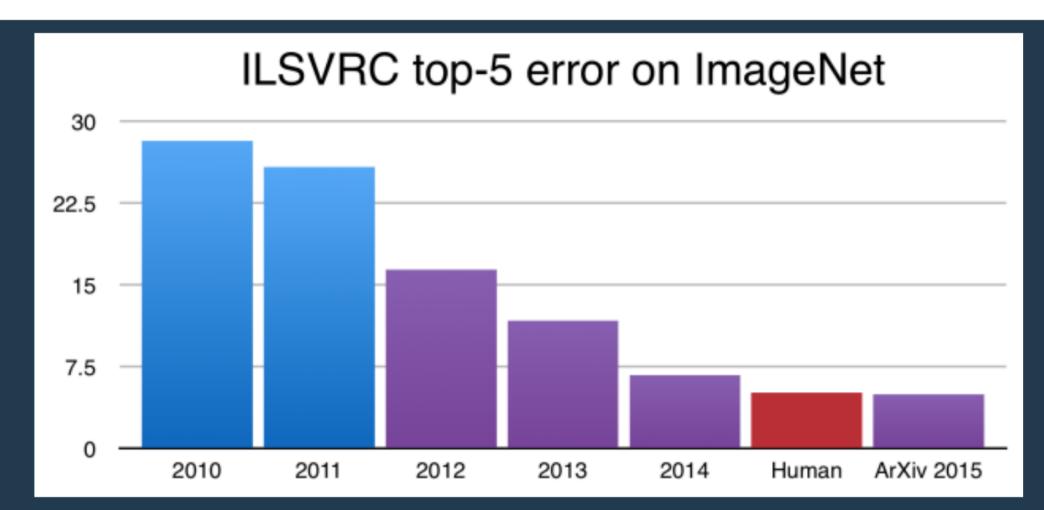


Keras.io/applications

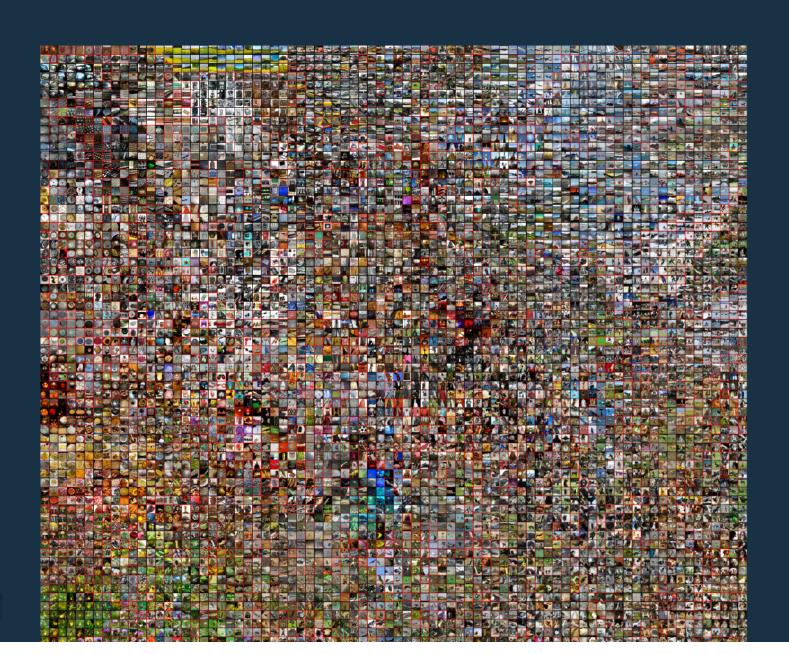
ILSVRC'14 GoogleNet ILSVRC'14 VGG

ILSVRC'13

ILSVRC'12 AlexNet

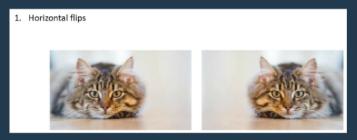


t-SNE visualization of CNN codes



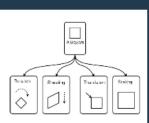
Data Augmentation

- change the pixel without changing the label
- Train on transformed data
- very widely used



- 1. Horizontal flips
- 2. Random Crops / Scales
- 3. Random jitter

- Horizontal flips
 Random Crops / Scales
- 1. Horizontal flips
- 2. Random Crops / Scales
- 3. Random jitter
- 4. Be Creative:
 - · Random Combination of:
 - 1. Translation
 - 2. Rotation
 - 3. Stretching
 - 4. Shearing
 - 5. Lens distortion



Transfer Learning

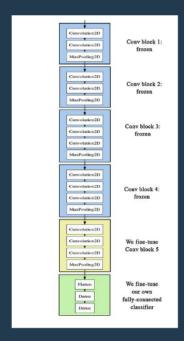
Transfer Learning or Domain Adaptation:

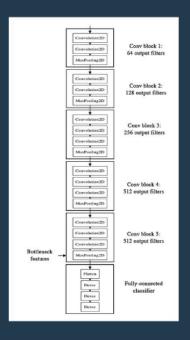
- Very few people train an entire CNN from scratch, because we do not have enough data
- It is common to use from pretrained model trained on very large dataset which contains 1.2 million large images with 1000 categories.
- Using ConvNet as an initialization or feature extractor!
- Two different scenario for using pretrained model:
 - ConvNet as fixed feature extractor: CNN Codes
 - · Fine-tuining the Convnet:
 - Replace the last fully-connected layers with new one with random weight and train their weights again.
 - If you have more data, you can retrain more layers with "backprop"

Transfer Learning or Domain Adaptation:

When and how to fine tune:

- 1. New dataset is small and is similar to original dataset:
 - No need to retrain high level features in CNN If you do, you overfit
 - Just need to retrain the classifier part of model
- 2. New dataset is large and is similar to original dataset:
 - Retrain all the weights in the network
- 3. New dataset is small and are totally different from original dataset:
 - Train the classifier not on top of the network but on top of earlier layers
- 4. New dataset is large and are totally differenet
 - Just fine tune all the weights but using the pretrained model as an initialization





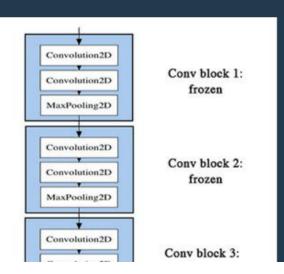
Transfer

Transfer Learning or Domain Adaptation:

- Very few people train an entire CNN from scratch, because we do not have enough data
- It is common to use from pretrained model trained on very large dataset which contains 1.2 million large images with 1000 categories.
- Using ConvNet as an initialization or feature extractor!
- Two different scenario for using pretrained model:
 - ConvNet as fixed feature extractor: CNN Codes
 - Fine-tuining the Convnet:
 - Replace the last fully-connected layers with new one with random weight and train their weights again.
 - If you have more data, you can retrain more layers with "backprop"

Transfer Learning or Domain Adaptation:

- Very few people train an entire CNN from scratch, because we do not have enough data
- It is common to use from pretrained model trained on very large dataset which contains 1.2 million large images with 1000 categories.
- Using ConvNet as an initialization or feature extractor!
- Two different scenario for using pretrained model:
 - ConvNet as fixed feature extractor: CNN Codes
 - Fine-tuining the Convnet:
 - Replace the last fully-connected layers with new one with random weight and train their weights again.
 - If you have more data, you can retrain more layers with "backprop"



er Learning

Transfer Learning or Domain Adaptation:

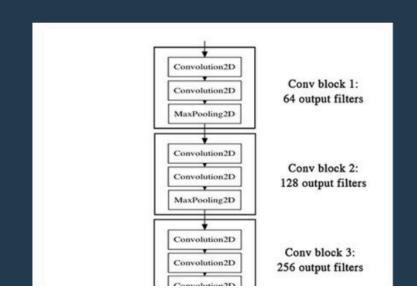
When and how to fine tune:

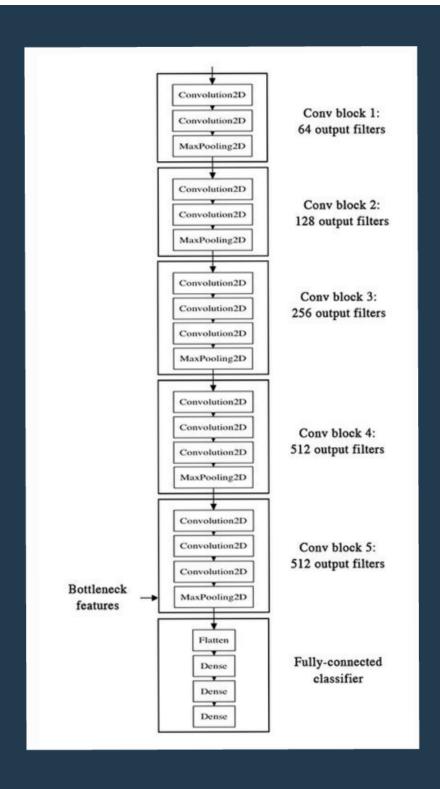
- 1. New dataset is small and is similar to original dataset:
 - No need to retrain high level features in CNN If you do, you overfit
 - Just need to retrain the classifier part of model
- 2. New dataset is large and is similar to original dataset:
 - Retrain all the weights in the network
- 3. New dataset is small and are totally different from original dataset:
 - Train the classifier not on top of the network but on top of earlier layers
- 4. New dataset is large and are totally differenet
 - Just fine tune all the weights but using the pretrained model as an initialization

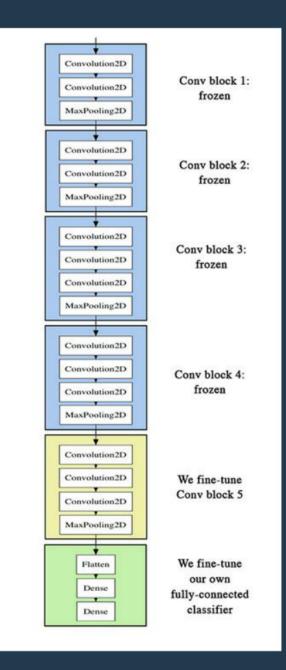
Hansiel Leathing of Domain Adaptation.

When and how to fine tune:

- 1. New dataset is small and is similar to original dataset:
 - No need to retrain high level features in CNN If you do, you overfit
 - Just need to retrain the classifier part of model
- 2. New dataset is large and is similar to original dataset:
 - Retrain all the weights in the network
- 3. New dataset is small and are totally different from original dataset:
 - Train the classifier not on top of the network but on top of earlier layers
- 4. New dataset is large and are totally differenet
 - Just fine tune all the weights but using the pretrained model as an initialization







Bot

some useful links:

- · https://mitpress.mit.edu/books/deep-learning
- https://github.com/Alireza-Akhavan/TensorFlow-Examples
- http://bigdataworkgroup.ir/
- https:/flyyufelix.github.io/2016/10/03/fine-tuning-in-keras-part1.html
- https://github.com/Alireza-Akhavan/class.vision

• Telegram:

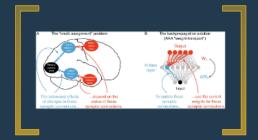
'

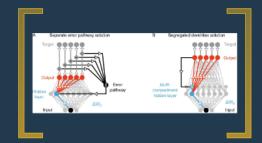
- @cvision
- $\bullet \textit{ @} deep learning.ir$
- @http://qa.deeplearning.ir
- @irandeeplearning

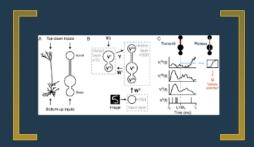
Kaggle.com

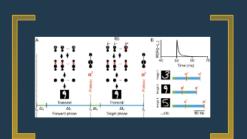
Evaluation Speed Wide Deep Accuracy

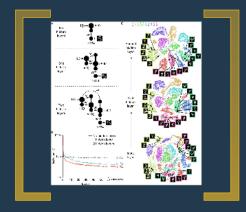
Do Our Brains Use Deep Learning to Make Sense of the World?







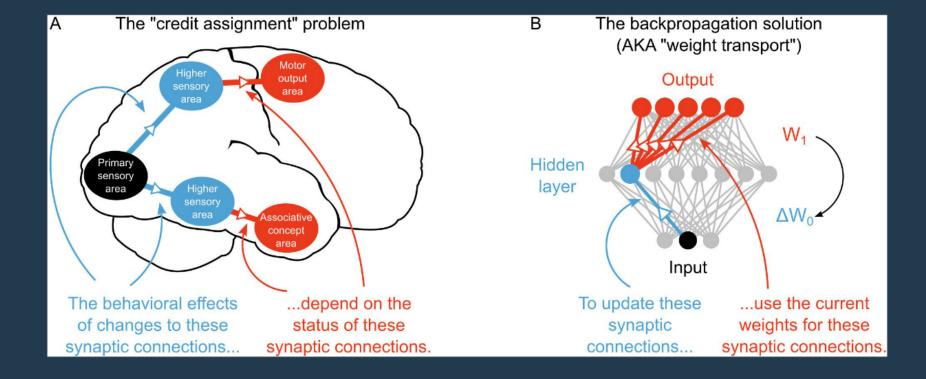


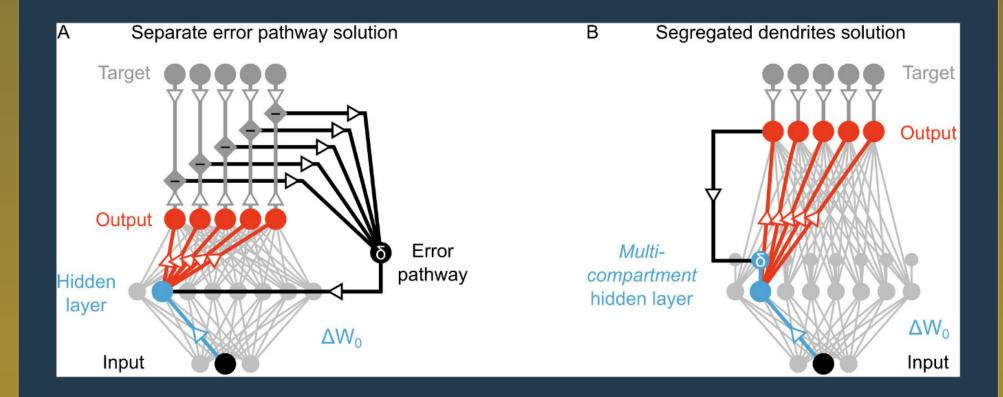


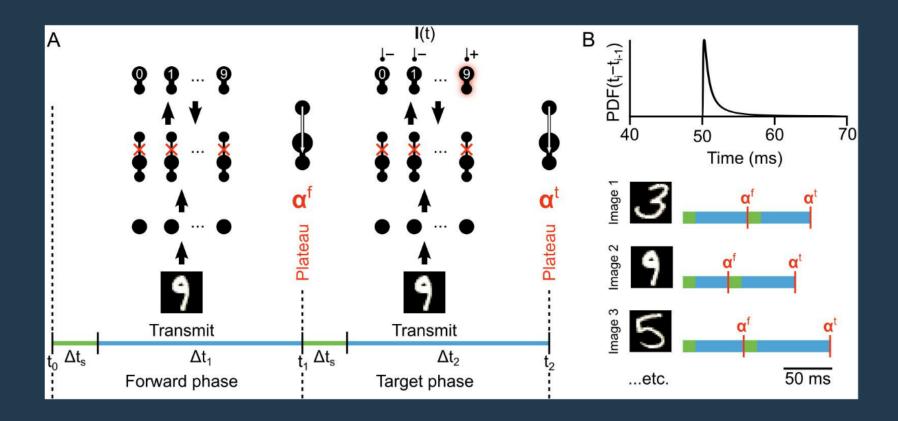


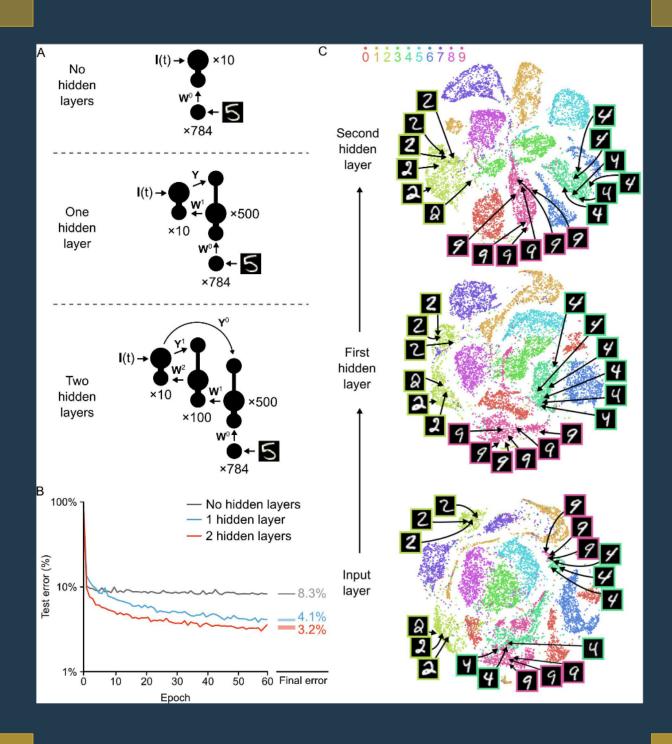
https://elifesciences.org/articles/22901/figures

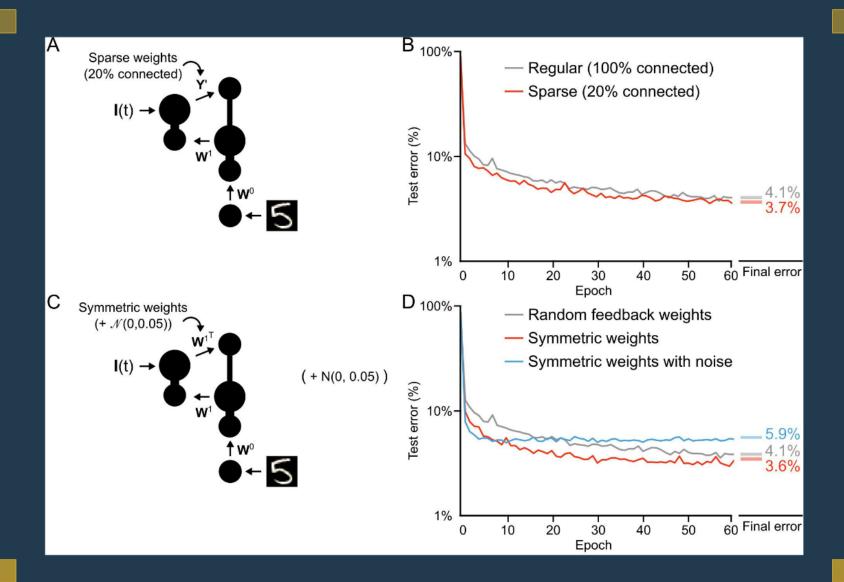
Do Our Brains Use Deep Learning to Make Sense of the World?

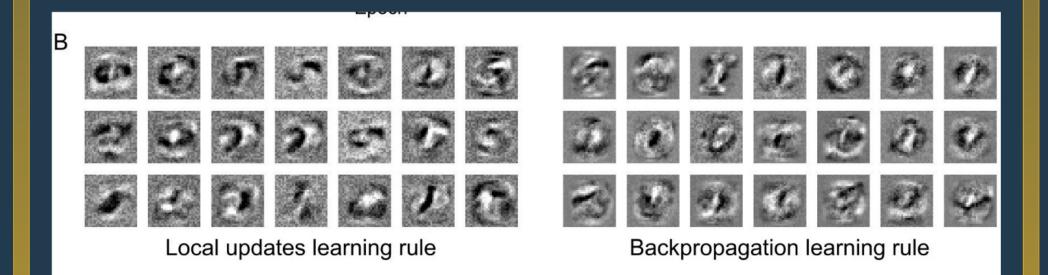












Deep Learning Frameworks

TensorFlow Caffe Keras Theano Lasagne

Lasagne

Practice!

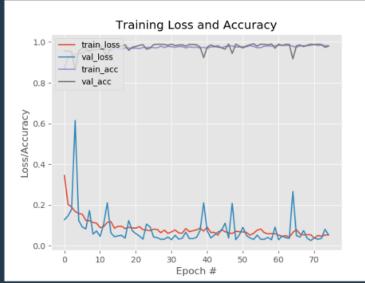
- Transfer Learning (Code)
- Classify new category (Code)
- multi label classification
- Speech Recognition



SmallerVGGNet input: (None, 96, 96, 3) conv2d_1_input: InputLayer output: (None, 96, 96, 3) input: (None, 96, 96, 3) conv2d_1: Conv2D output: (None, 96, 96, 32) (None, 96, 96, 32) activation_1: Activation output: (None, 96, 96, 32) input: (None, 96, 96, 32) batch_normalization_1: BatchNormalization

pyimagesearch.com

pyimagesearch.com



pyimagesearch.com

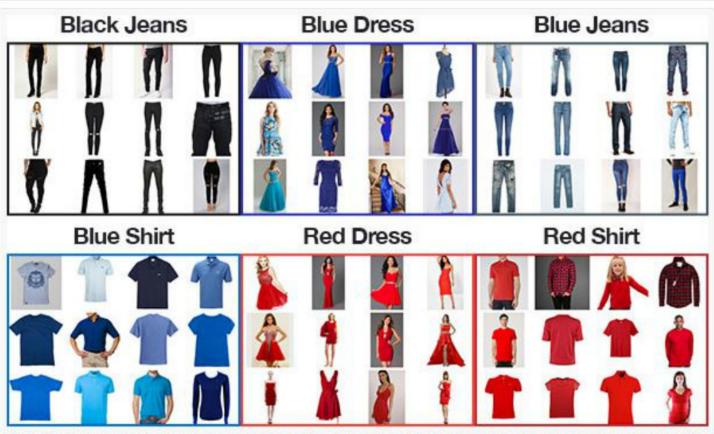
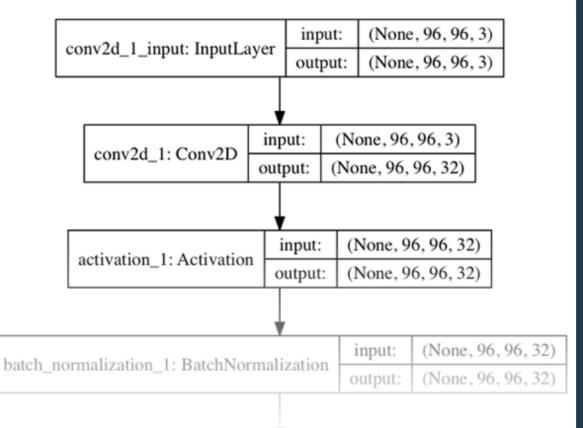


Figure 1: A montage of a multi-class deep learning dataset. We'll be using Keras to train a multi-label classifier to predict both the color and the type of clothing.

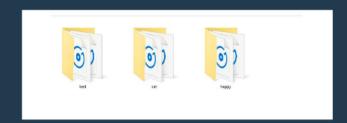
pyimagesearch.com

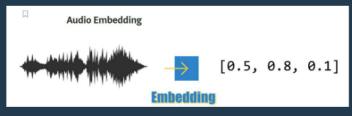
pyimagesea

SmallerVGGNet

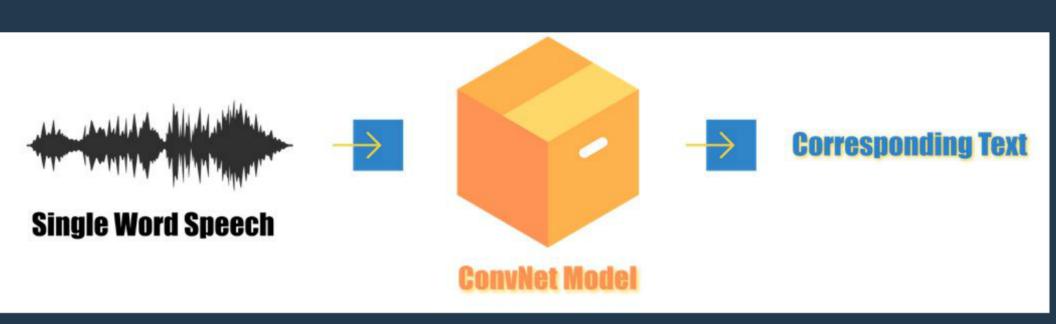


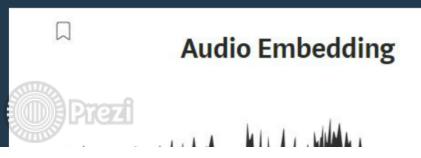
pyimagesearch.com

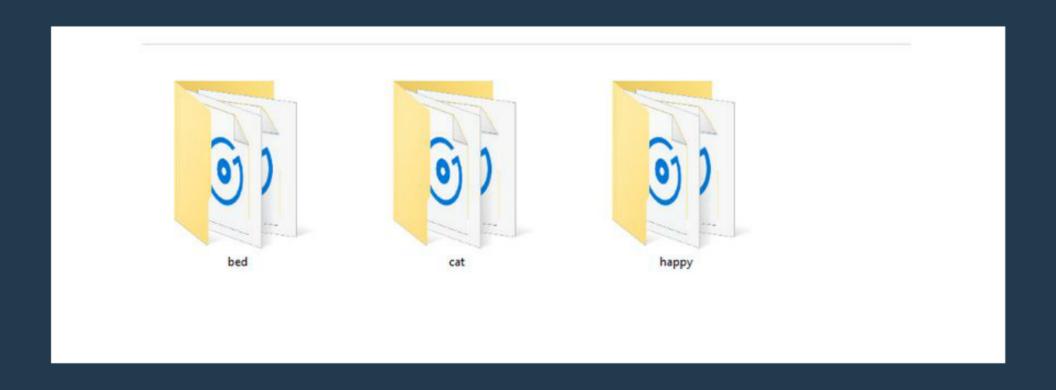




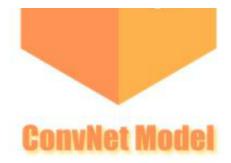
https://blog.manash.me/building-a-dead-simple-word-recognition-engine-using-convnet-in-keras-25e72c19c12b







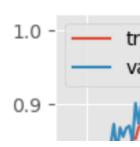
Single Word Speech



Audio Embedding

Embedding

[0.5, 0.8, 0.1]



cat happy

What?

Deep Learning

Why?

How?

Thank You for attention:)

Any Question?

Thank You for attention :)

Any Question?

