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Introduction

• Data can be represented in the form of graphs
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Introduction

• We can use the representation of nodes to perform several tasks
Classification

Recommendation

Link Prediction
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Node Classification
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Graph Representation
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Feature Learning in Graph
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From Images to Networks
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Real-World Graphs
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Naïve Graph Neural Network

► Join adjacency matrix and features
► Feed them into a deep neural net

► Issues:
1. #parameters

2. Just using for fixed-size graph

3. Variant to Node ordering
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Challenging for standard deep neural 
net architectures (CNNs, RNNs)



Graph Convolutional Network (GCN)
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Optimal Convolutional Neural Network for Graph

► Invariant to node ordering

► Locality

► Model parameters will be independent from graph size (Applicable to unseen 
data)

► Independent of graph structure
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Difference between Convolving in Image & Graph

► Building Block of GCNs

► For each node in the graph, a convolutional operator consists of two main steps:

❖ Aggregation of neighboring node features 

❖ Applying a nonlinear function to generate

 the output features  
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Graph Convolutional Layer
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GCN Structure
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Wu, Felix, et al. "Simplifying Graph Convolutional Networks."(2019)



Towards the GAT convolution layer

1. Naïve convolution: 

► Uniformly average neighboring node features and apply a non-linear function

2. Less-naïve convolution:

► Multiply features by a weight matrix then uniformly average features and apply a 
non-linear function

3. Kipf & Welling:

► Weights in average depends on degree of neighboring nodes

4. Velickovic et al. (2018) (Graph Attention Networks):

► Weights computed by a self-attention mechanism based on node features
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Graph Attention Layer -Aggregation

►  
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Graph Attention Layer (Weights)

► Self-Attention head

► Output of self-attention head 

► Weights can then be used to compute output 
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Graph Attention Layer (Multiple Heads)

► Aggregation with single head

► Aggregation with multiple heads

o Final Layer uses average instead of concatenation
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Transductive & Inductive
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Experiments/ Transductive

► Citation Networks: Cora, Citeseer and Pubmed

► Each node in the graph belongs to a one of C classes.
▪ Cora dataset

►  20 nodes per class is used for training, 500 nodes are used for validation and 1000 for testing.

► Architecture:
▪ 2 Layers of convolutions.

▪ First layer has 8 attention heads, each computing 8 features.

▪ Second layer has1attention head computing C features, followed by a Soft Max layer.

▪ Dropout is applied to layer inputs as well as to attention coefficients.
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Experiments/ Inductive

► Protein-Protein interaction dataset

► Training: 20graphs,Validation: 2graphs, Testing: 2graphs

► Testing graphs are completely unobserved during training

► Eachnodehas50features.

► 121classes (each node can have multiple labels)

► Architecture:

Three-Layer GAT model.

Layers#1&#2:four attention heads computing 256 features each.

Layer#3: six attention heads computing 121 features each, that are averaged and followed by a

 logistic sigmoid activation.

Graph Representation

21



Graph SAGE

► Adapt the GCN idea to inductive node embedding
► Generalize beyond simple convolutions
► Demonstrate that this generalization

• Leads to significant performance gains
• Allows the model to learn about local structures
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Idea SAGE

► Idea: Node’s neighborhood defines a computation graph

► Learn how to propagate information across the graph to compute node 
features
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Determine node computation graph Propagate and transform information



Graph SAGE

► Each node defines its own computational graph

▪ Each edge in this graph is a transformation/aggregation function 
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Graph SAGE
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SAGE Algorithm
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Weisfeiler-Lehman graph

► The classic Weisfeiler-Lehman graph isomorphism test is a special case of Graph SAGE

► We replace the hash function with trainable neural nets
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Shervashidze, Nino, et al. "Weisfeiler-Lehman graph kernels." Journal of Machine Learning Research (2011)



Parameter Sharing

► Two types of parameters
o Aggregate function can have parameters.

o Matrix W(k)

► Adapt to inductive setting (e.g., unsupervised loss, neighborhood sampling, mini 
batch optimization)

► Generalized notion of “aggregating neighborhood”
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Benefits of the algorithm

► Can use different aggregators 

► Can use different loss functions

► Model has a constant number of parameters

► Fast scalable inference

► Can be applied to any node in any network
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Application: Pinterest

► Human curated collection of pins
► Pin: a visual bookmark someone has saved from the internet to a 

board they’ve created.
► Board: A greater collection of ideas (pins having s.th. in common)
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Pin SAGE

► Semi-Supervised node embedding for graph-based recommendations

► Graph:2B pins, 1B boards, 20B edges
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Pinterest Graph

► Pinterest Graph

► Graph is dynamic : need to apply to new nodes without model retraining

► Rich node features : content, image
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Task: item-item recommendation

Related Pin recommendations
► Given user is looking at pin Q, what pin X are they going to save next.

Graph Representation

33



GraphSAGE Training

► Leverage inductive capability, and train on individual sub graphs

▪ 300 million nodes, 1 billion edges, 1.2 billion pin pairs (Q, X)

► Large batch size: 2048 per mini batch

Graph Representation

34



Graph SAGE: Inference

Graph Representation

35

� Use Map Reduce for model inference



Related Pin recommendations

► Given user is looking at pin Q, predict what pin X are they going to save next 

► Baselines for comparison
❖ Visual:VGG-16 visual features

❖ Annotation:Word2Vec model

❖ Combined: combine visual and annotation

❖ RW: Random-walk based algorithm Graph SAGE

► Setup: Embed 2B pins, perform nearest neighbor to generate recommendations
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Ranking

Task :Given Q, rank X as high as possible among 2B pins

► Hit-rate: Pct. P was among top-k

► MRR: Mean reciprocal rank
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Example Recommendations
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Summary

► Graph Convolution Networks
Generalize beyond simple convolutions

► Fuses node features & graph info

► State-of-the-art accuracy for node classification and link prediction.

► Model size independent of graph size; 

► can scale to billions of nodes

► Largest embedding to date (3B nodes, 20B edges)

► Leads to significant performance gains
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